-
Notifications
You must be signed in to change notification settings - Fork 62
/
evaluate_msc.py
154 lines (122 loc) · 5.35 KB
/
evaluate_msc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
import torch
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data
from deeplab.model import Res_Deeplab
from deeplab.datasets import VOCDataSet
from collections import OrderedDict
import os
import matplotlib.pyplot as plt
import torch.nn as nn
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
DATA_DIRECTORY = '../data/VOCdevkit/voc12'
DATA_LIST_PATH = './dataset/list/val.txt'
IGNORE_LABEL = 255
NUM_CLASSES = 21
NUM_STEPS = 1449 # Number of images in the validation set.
RESTORE_FROM = './deeplab_resnet.ckpt'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLabLFOV Network")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
return parser.parse_args()
def get_iou(data_list, class_num, save_path=None):
from multiprocessing import Pool
from deeplab.metric import ConfusionMatrix
ConfM = ConfusionMatrix(class_num)
f = ConfM.generateM
pool = Pool()
m_list = pool.map(f, data_list)
pool.close()
pool.join()
for m in m_list:
ConfM.addM(m)
aveJ, j_list, M = ConfM.jaccard()
print('meanIOU: ' + str(aveJ) + '\n')
if save_path:
with open(save_path, 'w') as f:
f.write('meanIOU: ' + str(aveJ) + '\n')
f.write(str(j_list)+'\n')
f.write(str(M)+'\n')
def show_all(gt, pred):
import matplotlib.pyplot as plt
from matplotlib import colors
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig, axes = plt.subplots(1, 2)
ax1, ax2 = axes
classes = np.array(('background', # always index 0
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'))
colormap = [(0,0,0),(0.5,0,0),(0,0.5,0),(0.5,0.5,0),(0,0,0.5),(0.5,0,0.5),(0,0.5,0.5),
(0.5,0.5,0.5),(0.25,0,0),(0.75,0,0),(0.25,0.5,0),(0.75,0.5,0),(0.25,0,0.5),
(0.75,0,0.5),(0.25,0.5,0.5),(0.75,0.5,0.5),(0,0.25,0),(0.5,0.25,0),(0,0.75,0),
(0.5,0.75,0),(0,0.25,0.5)]
cmap = colors.ListedColormap(colormap)
bounds=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
norm = colors.BoundaryNorm(bounds, cmap.N)
ax1.set_title('gt')
ax1.imshow(gt, cmap=cmap, norm=norm)
ax2.set_title('pred')
ax2.imshow(pred, cmap=cmap, norm=norm)
plt.show()
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
gpu0 = args.gpu
model = Res_Deeplab(num_classes=args.num_classes)
saved_state_dict = torch.load(args.restore_from)
model.load_state_dict(saved_state_dict)
model.eval()
model.cuda(gpu0)
testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(505, 505), mean=IMG_MEAN, scale=False, mirror=False),
batch_size=1, shuffle=False, pin_memory=True)
interp = nn.Upsample(size=(505, 505), mode='bilinear')
data_list = []
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
images, label, size, name = batch
images = Variable(images, volatile=True)
h, w, c = size[0].numpy()
images075 = nn.Upsample(size=(int(h*0.75), int(w*0.75)), mode='bilinear')(images)
images05 = nn.Upsample(size=(int(h*0.5), int(w*0.5)), mode='bilinear')(images)
out100 = model(images.cuda(args.gpu))
out075 = model(images075.cuda(args.gpu))
out05 = model(images05.cuda(args.gpu))
o_h, o_w = out100.size()[2:]
interpo1 = nn.Upsample(size=(o_h, o_w), mode='bilinear')
out_max = torch.max(torch.stack([out100, interpo1(out075), interpo1(out05)]), dim=0)[0]
output = interp(out_max).cpu().data[0].numpy()
output = output[:,:h,:w]
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.int)
gt = np.asarray(label[0].numpy()[:h,:w], dtype=np.int)
# show_all(gt, output)
data_list.append([gt.flatten(), output.flatten()])
get_iou(data_list, args.num_classes)
if __name__ == '__main__':
main()