-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
823 lines (716 loc) · 35.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import numpy as np
from pybedtools import BedTool, Interval
import pyfasta
import parmap
# Standard library imports
import os
import itertools
#from data_iter_DeepSEA import DataIterator
from data_iter import DataIterator
import pybedtools
import pdb
pybedtools.set_tempdir('/data1/fly/tmp')
batch_size = 100
genome_sizes_file = 'resources/hg19.autoX.chrom.sizes'
genome_fasta_file = 'resources/hg19.fa'
blacklist_file = 'resources/blacklist.bed.gz'
genome_window_size = 200
genome_window_step = 50
shift_size = 20
def set_seed(seed):
np.random.seed(seed)
def chroms_filter(feature, chroms):
if feature.chrom in chroms:
return True
return False
def subset_chroms(chroms, bed):
result = bed.filter(chroms_filter, chroms).saveas()
return BedTool(result.fn)
def get_genome_bed():
genome_sizes_info = np.loadtxt(genome_sizes_file, dtype=str)
chroms = list(genome_sizes_info[:,0])
chroms_sizes = list(genome_sizes_info[:,1].astype(int))
genome_bed = []
for chrom, chrom_size in zip(chroms, chroms_sizes):
genome_bed.append(Interval(chrom, 0, chrom_size))
genome_bed = BedTool(genome_bed)
return chroms, chroms_sizes, genome_bed
def get_bigwig_rc_order(bigwig_names):
assert len(set(bigwig_names)) == len(bigwig_names)
rc_indices = np.arange(len(bigwig_names))
for ind, bigwig_name in enumerate(bigwig_names):
if bigwig_name[-4:] == '_fwd':
bigwig_rc_name = bigwig_name[:-4] + '_rev'
bigwig_rc_index = bigwig_names.index(bigwig_rc_name)
rc_indices[bigwig_rc_index] = ind
if bigwig_name[-4:] == '_rev':
bigwig_rc_name = bigwig_name[:-4] + '_fwd'
bigwig_rc_index = bigwig_names.index(bigwig_rc_name)
rc_indices[bigwig_rc_index] = ind
return rc_indices
def make_features_multiTask(positive_windows, y_positive, nonnegative_regions_bed,
bigwig_files, bigwig_names, genome, epochs, valid_chroms, test_chroms):
chroms, chroms_sizes, genome_bed = get_genome_bed()
train_chroms = chroms
for chrom in valid_chroms + test_chroms:
train_chroms.remove(chrom)
genome_bed_train, genome_bed_valid, genome_bed_test = \
[subset_chroms(chroms_set, genome_bed) for chroms_set in
(train_chroms, valid_chroms, test_chroms)]
positive_windows_train = []
positive_windows_valid = []
positive_windows_test = []
positive_data_train = []
positive_data_valid = []
positive_data_test = []
import pdb
print('Splitting positive windows into training, validation, and testing sets')
for positive_window, target_array in itertools.izip(positive_windows, y_positive):
if len(positive_window.chrom) > 8:
pdb.set_trace()
chrom = positive_window.chrom
start = int(positive_window.start)
stop = int(positive_window.stop)
if chrom in test_chroms:
positive_windows_test.append(positive_window)
positive_data_test.append((chrom, start, stop, shift_size, bigwig_files, [], target_array))
elif chrom in valid_chroms:
positive_windows_valid.append(positive_window)
positive_data_valid.append((chrom, start, stop, shift_size, bigwig_files, [], target_array))
else:
positive_windows_train.append(positive_window)
positive_data_train.append((chrom, start, stop, shift_size, bigwig_files, [], target_array))
positive_windows_train = BedTool(positive_windows_train)
positive_windows_valid = BedTool(positive_windows_valid)
positive_windows_test = BedTool(positive_windows_test)
import pdb
print('Getting negative training examples')
negative_windows_train = BedTool.cat(*(epochs*[positive_windows]), postmerge=False)
#negative_windows_train = BedTool.cat(*(10*[positive_windows]), postmerge=False)
#pdb.set_trace()
negative_windows_train = negative_windows_train.shuffle(g=genome_sizes_file,
incl=genome_bed_train.fn,
excl=nonnegative_regions_bed.fn,
noOverlapping=False,
seed=np.random.randint(-214783648, 2147483647))
#seed=np.random.randint(-21478364, 21474836))
print('Getting negative validation examples')
negative_windows_valid = positive_windows_valid.shuffle(g=genome_sizes_file,
incl=genome_bed_valid.fn,
excl=nonnegative_regions_bed.fn,
noOverlapping=False,
seed=np.random.randint(-214783648, 2147483647))
#seed=np.random.randint(-21478364, 21474836))
print('Getting negative testing examples')
negative_windows_test = positive_windows_test.shuffle(g=genome_sizes_file,
incl=genome_bed_test.fn,
excl=nonnegative_regions_bed.fn,
noOverlapping=False,
seed=np.random.randint(-214783648, 2147483647))
#seed=np.random.randint(-21478364, 21474836))
# Train
print('Extracting data from negative training BEDs')
negative_targets = np.zeros(y_positive.shape[1])
negative_data_train = [(window.chrom, window.start, window.stop, shift_size, bigwig_files, [], negative_targets)
for window in negative_windows_train]
# Validation
print('Extracting data from negative validation BEDs')
negative_data_valid = [(window.chrom, window.start, window.stop, shift_size, bigwig_files, [], negative_targets)
for window in negative_windows_valid]
# Test
print('Extracting data from negative testing BEDs')
negative_data_test = [(window.chrom, window.start, window.stop, shift_size, bigwig_files, [], negative_targets)
for window in negative_windows_test]
num_positive_train_windows = len(positive_data_train)
data_valid = negative_data_valid + positive_data_valid
data_test = negative_data_test + positive_data_test
print('Shuffling training data')
data_train = []
for i in xrange(epochs):
epoch_data = []
epoch_data.extend(positive_data_train)
epoch_data.extend(negative_data_train[i*num_positive_train_windows:(i+1)*num_positive_train_windows])
np.random.shuffle(epoch_data)
data_train.extend(epoch_data)
print('Generating data iterators')
bigwig_rc_order = get_bigwig_rc_order(bigwig_names)
datagen_train = DataIterator(data_train, genome, batch_size, L, bigwig_rc_order)
datagen_valid = DataIterator(data_valid, genome, batch_size, L, bigwig_rc_order)
datagen_test = DataIterator(data_test, genome, batch_size, L, bigwig_rc_order)
print(len(datagen_train), 'training samples')
print(len(datagen_valid), 'validation samples')
print(len(datagen_test), 'test samples')
return datagen_train, datagen_valid, datagen_test, data_valid,data_test
def data_to_bed(data):
intervals = []
for datum in data:
chrom = datum[0]
start = datum[1]
stop = datum[2]
intervals.append(Interval(chrom, start, stop))
return BedTool(intervals)
def extract_data_from_bed(args, shift, label, gencode):
peaks = args[0]
bigwig_files = args[1]
meta = args[2]
data = []
if gencode:
cpg_bed = BedTool('resources/cpgisland.bed.gz')
cds_bed = BedTool('resources/wgEncodeGencodeBasicV19.cds.merged.bed.gz')
intron_bed = BedTool('resources/wgEncodeGencodeBasicV19.intron.merged.bed.gz')
promoter_bed = BedTool('resources/wgEncodeGencodeBasicV19.promoter.merged.bed.gz')
utr5_bed = BedTool('resources/wgEncodeGencodeBasicV19.utr5.merged.bed.gz')
utr3_bed = BedTool('resources/wgEncodeGencodeBasicV19.utr3.merged.bed.gz')
peaks_cpg_bedgraph = peaks.intersect(cpg_bed, wa=True, c=True)
peaks_cds_bedgraph = peaks.intersect(cds_bed, wa=True, c=True)
peaks_intron_bedgraph = peaks.intersect(intron_bed, wa=True, c=True)
peaks_promoter_bedgraph = peaks.intersect(promoter_bed, wa=True, c=True)
peaks_utr5_bedgraph = peaks.intersect(utr5_bed, wa=True, c=True)
peaks_utr3_bedgraph = peaks.intersect(utr3_bed, wa=True, c=True)
for cpg, cds, intron, promoter, utr5, utr3 in itertools.izip(peaks_cpg_bedgraph,peaks_cds_bedgraph,peaks_intron_bedgraph,peaks_promoter_bedgraph,peaks_utr5_bedgraph,peaks_utr3_bedgraph):
chrom = cpg.chrom
peak_start = cpg.start
peak_stop = cpg.stop
peak_mid = (peak_start + peak_stop)/2
start = peak_mid - genome_window_size/2
stop = peak_mid + genome_window_size/2
if shift:
shift_size = peak_stop - start - 75 - 1
else:
shift_size = 0
gencode = np.array([cpg.count, cds.count, intron.count, promoter.count, utr5.count, utr3.count], dtype=bool)
meta_gencode = np.append(meta, gencode)
data.append((chrom, start, stop, shift_size, bigwig_files, meta_gencode, label))
else:
for peak in peaks:
chrom = peak.chrom
peak_start = peak.start
peak_stop = peak.stop
peak_mid = (peak_start + peak_stop)/2
start = peak_mid - genome_window_size/2
stop = peak_mid + genome_window_size/2
if shift:
shift_size = peak_stop - start - 75 - 1
else:
shift_size = 0
data.append((chrom, start, stop, shift_size, bigwig_files, meta, label))
return data
def valid_test_split_wrapper(bed, valid_chroms, test_chroms):
bed_train = []
bed_valid = []
bed_test = []
for interval in bed:
chrom = interval.chrom
start = interval.start
stop = interval.stop
if chrom in test_chroms:
bed_test.append(interval)
elif chrom in valid_chroms:
bed_valid.append(interval)
else:
bed_train.append(interval)
bed_train = BedTool(bed_train)
bed_valid = BedTool(bed_valid)
bed_test = BedTool(bed_test)
return bed_train, bed_valid, bed_test
def negative_shuffle_wrapper(args, include_bed, num_copies, noOverlapping):
positive_windows = args[0]
nonnegative_regions_bed = args[1]
bigwig_files = args[2]
randomseed = args[3]
if num_copies > 1:
positive_windows = BedTool.cat(*(num_copies * [positive_windows]), postmerge=False)
negative_windows = positive_windows.shuffle(g=genome_sizes_file,
incl=include_bed.fn,
excl=nonnegative_regions_bed.fn,
noOverlapping=noOverlapping,
seed=randomseed)
return negative_windows
def make_features_singleTask(chip_bed_list, nonnegative_regions_bed_list, bigwig_files_list, bigwig_names,
meta_list, gencode, genome, epochs, negatives, valid_chroms, test_chroms,
valid_chip_bed_list, valid_nonnegative_regions_bed_list,
valid_bigwig_files_list, valid_meta_list):
num_cells = len(chip_bed_list)
chroms, chroms_sizes, genome_bed = get_genome_bed()
train_chroms = chroms
for chrom in valid_chroms + test_chroms:
train_chroms.remove(chrom)
genome_bed_train, genome_bed_valid, genome_bed_test = \
[subset_chroms(chroms_set, genome_bed) for chroms_set in
(train_chroms, valid_chroms, test_chroms)]
print('Splitting ChIP peaks into training, validation, and testing BEDs')
chip_bed_split_list = parmap.map(valid_test_split_wrapper, chip_bed_list, valid_chroms, test_chroms)
chip_bed_train_list, chip_bed_valid_list, chip_bed_test_list = zip(*chip_bed_split_list)
if valid_chip_bed_list: # the user specified a validation directory, must adjust validation data
valid_chip_bed_split_list = parmap.map(valid_test_split_wrapper, valid_chip_bed_list, valid_chroms, test_chroms)
_, chip_bed_valid_list, _ = zip(*valid_chip_bed_split_list)
else:
valid_nonnegative_regions_bed_list = nonnegative_regions_bed_list
valid_bigwig_files_list = bigwig_files_list
valid_meta_list = meta_list
positive_label = [True]
#Train
print('Extracting data from positive training BEDs')
positive_data_train_list = parmap.map(extract_data_from_bed,
zip(chip_bed_train_list, bigwig_files_list, meta_list),
True, positive_label, gencode)
positive_data_train = list(itertools.chain(*positive_data_train_list))
#Validation
print('Extracting data from positive validation BEDs')
positive_data_valid_list = parmap.map(extract_data_from_bed,
zip(chip_bed_valid_list, valid_bigwig_files_list, valid_meta_list),
False, positive_label, gencode)
positive_data_valid = list(itertools.chain(*positive_data_valid_list))
print('Shuffling positive training windows in negative regions')
train_noOverlap = True
train_randomseeds = np.random.randint(-214783648, 2147483647, num_cells)
positive_windows_train_list = parmap.map(data_to_bed, positive_data_train_list)
negative_windows_train_list = parmap.map(negative_shuffle_wrapper,
zip(positive_windows_train_list, nonnegative_regions_bed_list,
bigwig_files_list, train_randomseeds),
genome_bed_train, negatives*epochs, train_noOverlap)
print('Shuffling positive validation windows in negative regions')
valid_randomseeds = np.random.randint(-214783648, 2147483647, num_cells)
positive_windows_valid_list = parmap.map(data_to_bed, positive_data_valid_list)
negative_windows_valid_list = parmap.map(negative_shuffle_wrapper,
zip(positive_windows_valid_list, nonnegative_regions_bed_list,
bigwig_files_list, valid_randomseeds),
genome_bed_valid, negatives, True)
negative_label = [False]
#Train
print('Extracting data from negative training BEDs')
negative_data_train_list = parmap.map(extract_data_from_bed,
zip(negative_windows_train_list, bigwig_files_list, meta_list),
False, negative_label, gencode)
negative_data_train = list(itertools.chain(*negative_data_train_list))
#Validation
print('Extracting data from negative validation BEDs')
negative_data_valid_list = parmap.map(extract_data_from_bed,
zip(negative_windows_valid_list, valid_bigwig_files_list, valid_meta_list),
False, negative_label, gencode)
negative_data_valid = list(itertools.chain(*negative_data_valid_list))
data_valid = negative_data_valid + positive_data_valid
print('Shuffling training data')
num_negatives_per_epoch = negatives*len(positive_data_train)
np.random.shuffle(negative_data_train)
data_train = []
for i in xrange(epochs):
epoch_data = []
epoch_data.extend(positive_data_train)
epoch_data.extend(negative_data_train[i*num_negatives_per_epoch:(i+1)*num_negatives_per_epoch])
np.random.shuffle(epoch_data)
data_train.extend(epoch_data)
print('Generating data iterators')
from data_iter import DataIterator
bigwig_rc_order = get_bigwig_rc_order(bigwig_names)
datagen_train = DataIterator(data_train, genome, batch_size, L, bigwig_rc_order)
datagen_valid = DataIterator(data_valid, genome, batch_size, L, bigwig_rc_order, shuffle=True)
print(len(datagen_train), 'training samples')
print(len(datagen_valid), 'validation samples')
return datagen_train, datagen_valid
def get_onehot_chrom(chrom):
fasta = pyfasta.Fasta(genome_fasta_file)
chr_str = str(fasta[chrom]).upper()
d = np.array(['A','C','G','T'])
y = np.fromstring(chr_str, dtype='|S1')[:, np.newaxis] == d
return y
def load_genome():
chroms = list(np.loadtxt(genome_sizes_file, usecols=[0], dtype=str))
onehot_chroms = parmap.map(get_onehot_chrom, chroms)
genome_dict = dict(zip(chroms, onehot_chroms))
return genome_dict
def intersect_count(chip_bed, windows_file):
windows = BedTool(windows_file)
chip_bedgraph = windows.intersect(chip_bed, wa=True, c=True, f=1.0*(genome_window_size/2+1)/genome_window_size, sorted=True)
bed_counts = [i.count for i in chip_bedgraph]
return bed_counts
def make_blacklist():
blacklist = BedTool(blacklist_file)
blacklist = blacklist.slop(g=genome_sizes_file, b=L)
# Add ends of the chromosomes to the blacklist
genome_sizes_info = np.loadtxt(genome_sizes_file, dtype=str)
chroms = list(genome_sizes_info[:,0])
chroms_sizes = list(genome_sizes_info[:,1].astype(int))
blacklist2 = []
for chrom, size in zip(chroms, chroms_sizes):
blacklist2.append(Interval(chrom, 0, L))
blacklist2.append(Interval(chrom, size - L, size))
blacklist2 = BedTool(blacklist2)
blacklist = blacklist.cat(blacklist2)
return blacklist
def get_chip_beds(input_dir):
chip_info_file = input_dir + '/chip.txt'
chip_info = np.loadtxt(chip_info_file, dtype=str)
if len(chip_info.shape) == 1:
chip_info = np.reshape(chip_info, (-1,len(chip_info)))
tfs = list(chip_info[:, 1])
chip_bed_files = [input_dir + '/' + i for i in chip_info[:,0]]
chip_beds = [BedTool(chip_bed_file) for chip_bed_file in chip_bed_files]
print('Sorting BED files')
chip_beds = [chip_bed.sort() for chip_bed in chip_beds]
if len(chip_beds) > 1:
merged_chip_bed = BedTool.cat(*chip_beds)
else:
merged_chip_bed = chip_beds[0]
return tfs, chip_beds, merged_chip_bed
def load_chip_multiTask(input_dir):
tfs, chip_beds, merged_chip_bed = get_chip_beds(input_dir)
print('Removing peaks outside of X chromosome and autosomes')
chroms, chroms_sizes, genome_bed = get_genome_bed()
merged_chip_bed = merged_chip_bed.intersect(genome_bed, u=True, sorted=True)
print('Windowing genome')
genome_windows = BedTool().window_maker(g=genome_sizes_file, w=genome_window_size,
s=genome_window_step)
print('Extracting windows that overlap at least one ChIP interval')
positive_windows = genome_windows.intersect(merged_chip_bed, u=True, f=1.0*(genome_window_size/2+1)/genome_window_size, sorted=True)
# Exclude all windows that overlap a blacklisted region
blacklist = make_blacklist()
print('Removing windows that overlap a blacklisted region')
positive_windows = positive_windows.intersect(blacklist, wa=True, v=True, sorted=True)
num_positive_windows = positive_windows.count()
# Binary binding target matrix of all positive windows
print('Number of positive windows:', num_positive_windows)
print('Number of targets:', len(tfs))
# Generate targets
print('Generating target matrix of all positive windows')
y_positive = parmap.map(intersect_count, chip_beds, positive_windows.fn)
y_positive = np.array(y_positive, dtype=bool).T
print('Positive matrix sparsity', (~y_positive).sum()*1.0/np.prod(y_positive.shape))
merged_chip_slop_bed = merged_chip_bed.slop(g=genome_sizes_file, b=genome_window_size)
# Later we want to gather negative windows from the genome that do not overlap
# with a blacklisted or ChIP region
nonnegative_regions_bed = merged_chip_slop_bed.cat(blacklist)
return tfs, positive_windows, y_positive, nonnegative_regions_bed
def nonnegative_wrapper(a, bl_file):
bl = BedTool(bl_file)
a_slop = a.slop(g=genome_sizes_file, b=genome_window_size)
return bl.cat(a_slop).fn
def get_chip_bed(input_dir, tf, bl_file):
blacklist = BedTool(bl_file)
chip_info_file = input_dir + '/chip.txt'
chip_info = np.loadtxt(chip_info_file, dtype=str)
if len(chip_info.shape) == 1:
chip_info = np.reshape(chip_info, (-1,len(chip_info)))
tfs = list(chip_info[:, 1])
assert tf in tfs
tf_index = tfs.index(tf)
chip_bed_file = input_dir + '/' + chip_info[tf_index, 0]
chip_bed = BedTool(chip_bed_file)
chip_bed = chip_bed.sort()
#Remove any peaks not in autosomes or X chromosome
chroms, chroms_sizes, genome_bed = get_genome_bed()
chip_bed = chip_bed.intersect(genome_bed, u=True, sorted=True)
#Remove any peaks in blacklist regions
chip_bed = chip_bed.intersect(blacklist, wa=True, v=True, sorted=True)
if chip_info.shape[1] == 3:
relaxed_bed_file = input_dir + '/' + chip_info[tf_index, 2]
relaxed_bed = BedTool(relaxed_bed_file)
relaxed_bed = relaxed_bed.sort()
else:
relaxed_bed = chip_bed
return chip_bed, relaxed_bed
def load_chip_singleTask(input_dirs, tf):
blacklist = make_blacklist()
print('Loading and sorting BED file(s)')
chip_bed_list, relaxed_bed_list = zip(*parmap.map(get_chip_bed, input_dirs, tf, blacklist.fn))
# Later we want to gather negative windows from the genome that do not overlap
# with a blacklisted or ChIP region
print('Generating regions to exclude for negative windows')
nonnegative_regions_bed_file_list = parmap.map(nonnegative_wrapper, relaxed_bed_list, blacklist.fn)
nonnegative_regions_bed_list = [BedTool(i) for i in nonnegative_regions_bed_file_list]
return chip_bed_list, nonnegative_regions_bed_list
def load_meta(input_dirs):
meta_names = None
meta_list = []
for input_dir in input_dirs:
input_meta_info_file = input_dir + '/meta.txt'
if not os.path.isfile(input_meta_info_file):
input_meta_names = []
input_meta_list = []
else:
input_meta_info = np.loadtxt(input_meta_info_file, dtype=str)
if len(input_meta_info.shape) == 1:
input_meta_info = np.reshape(input_meta_info, (-1,2))
input_meta_names = list(input_meta_info[:, 1])
input_meta = input_meta_info[:,0].astype('float32')
if meta_names is None:
meta_names = input_meta_names
else:
assert meta_names == input_meta_names
meta_list.append(input_meta)
return meta_names, meta_list
def load_bigwigs(input_dirs):
bigwig_names = None
bigwig_files_list = []
for input_dir in input_dirs:
input_bigwig_info_file = input_dir + '/bigwig.txt'
if not os.path.isfile(input_bigwig_info_file):
input_bigwig_names = []
input_bigwig_files_list = []
else:
input_bigwig_info = np.loadtxt(input_bigwig_info_file, dtype=str)
if len(input_bigwig_info.shape) == 1:
input_bigwig_info = np.reshape(input_bigwig_info, (-1,2))
input_bigwig_names = list(input_bigwig_info[:, 1])
input_bigwig_files = [input_dir + '/' + i for i in input_bigwig_info[:,0]]
if bigwig_names is None:
bigwig_names = input_bigwig_names
else:
assert bigwig_names == input_bigwig_names
bigwig_files_list.append(input_bigwig_files)
return bigwig_names, bigwig_files_list
def get_output(input_layer, hidden_layers):
output = input_layer
for hidden_layer in hidden_layers:
output = hidden_layer(output)
return output
def DeepSEA(out,num_recurrent,num_bws):
from keras.models import Sequential
from keras.layers import Flatten, Dense, Dropout, Merge
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.pooling import GlobalMaxPooling2D
from keras.layers.core import Flatten
from keras.optimizers import SGD
from keras import regularizers
from keras.callbacks import ModelCheckpoint
from keras.layers import Concatenate
from keras.models import Model
from keras.layers import Input
forward_input = Input(shape=(1, L, 4 ,))
#reverse_input = Input(shape=(L, 4 + num_bws,))
nkernels = [160,240,480]
in_size = (1,1000,4)
l2_lam = 5e-07
l1_lam = 1e-08
if num_recurrent > 0:
hidden_layers = [
Conv2D(nkernels[0], kernel_size=(1,8), strides=(1,1), padding='same', input_shape=in_size, kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(1,4), strides=(1,4)),
Dropout(0.2),
Conv2D(nkernels[1], kernel_size=(1,8), strides=(1,1), padding='same', kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(1,4), strides=(1,4)),
Dropout(0.2),
Conv2D(nkernels[1], kernel_size=(1,8), strides=(1,1), padding='same', kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
Dropout(0.5),
Flatten(),
Dense(919, kernel_regularizer=regularizers.l1(l1_lam)),
Activation('relu'),
Dense(out, kernel_regularizer=regularizers.l1(l1_lam)),
Activation('sigmoid')
]
else:
pdb.set_trace()
forward_output = get_output(forward_input, hidden_layers)
#reverse_output = get_output(reverse_input, hidden_layers)
#output = merge([forward_output, reverse_output], mode='ave')
output = forward_output
#model = Model(input=[forward_input, reverse_input], output=output)
model = Model(input=forward_input, output=output)
return model
def scFANet(out,num_recurrent,num_bws):
from keras.models import Sequential
from keras.layers import Flatten, Dense, Dropout
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.pooling import GlobalMaxPooling2D
from keras.layers.core import Flatten
from keras.optimizers import SGD
from keras import regularizers
from keras.callbacks import ModelCheckpoint
from keras.layers import Concatenate
from keras.models import Model
from keras.layers import Input
forward_input = Input(shape=(1, L, 4 + num_bws*2,))
#reverse_input = Input(shape=(L, 4 + num_bws,))
nkernels = [160,240,480]
in_size = (1,1000,6)
l2_lam = 5e-07
l1_lam = 1e-08
if num_recurrent == 0:
hidden_layers = [
Conv2D(nkernels[0], kernel_size=(1,8), strides=(1,1), padding='same', input_shape=in_size, kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(1,4), strides=(1,4)),
Dropout(0.2),
Conv2D(nkernels[1], kernel_size=(1,8), strides=(1,1), padding='same', kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(1,4), strides=(1,4)),
Dropout(0.2),
Conv2D(nkernels[1], kernel_size=(1,8), strides=(1,1), padding='same', kernel_regularizer=regularizers.l2(l2_lam)),
BatchNormalization(),
Activation('relu'),
Dropout(0.5),
Flatten(),
Dense(919, kernel_regularizer=regularizers.l1(l1_lam)),
Activation('relu'),
Dense(out, kernel_regularizer=regularizers.l1(l1_lam)),
Activation('sigmoid')
]
else:
pdb.set_trace()
forward_output = get_output(forward_input, hidden_layers)
#reverse_output = get_output(reverse_input, hidden_layers)
#output = merge([forward_output, reverse_output], mode='ave')
output = forward_output
#model = Model(input=[forward_input, reverse_input], output=output)
model = Model(input=forward_input, output=output)
return model
def make_model(num_tfs, num_bws, num_motifs, num_recurrent, num_dense, dropout_rate):
from keras import backend as K
from keras.models import Model
from keras.layers import Dense, Dropout, Activation, Flatten, Layer, merge, Input
from keras.layers.convolutional import Convolution1D, MaxPooling1D
from keras.layers.pooling import GlobalMaxPooling1D
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import Bidirectional, TimeDistributed
'''
import tensorflow as tf
config = tf.ConfigProto(device_count={'gpu':1})
config.gpu_options.allow_growth=True
session = tf.Session(config=config)
'''
forward_input = Input(shape=(L, 4 + num_bws,))
reverse_input = Input(shape=(L, 4 + num_bws,))
if num_recurrent < 0:
hidden_layers = [
Convolution1D(input_dim=4 + num_bws, nb_filter=num_motifs,
filter_length=w, border_mode='valid', activation='relu',
subsample_length=1),
Dropout(0.1),
TimeDistributed(Dense(num_motifs, activation='relu')),
GlobalMaxPooling1D(),
Dropout(dropout_rate),
Dense(num_dense, activation='relu'),
Dropout(dropout_rate),
Dense(num_tfs, activation='sigmoid')
]
elif num_recurrent == 0:
hidden_layers = [
Convolution1D(input_dim=4 + num_bws, nb_filter=num_motifs,
filter_length=w, border_mode='valid', activation='relu',
subsample_length=1),
Dropout(0.1),
TimeDistributed(Dense(num_motifs, activation='relu')),
MaxPooling1D(pool_length=w2, stride=w2),
Dropout(dropout_rate),
Flatten(),
Dense(num_dense, activation='relu'),
Dropout(dropout_rate),
Dense(num_tfs, activation='sigmoid')
]
else:
hidden_layers = [
Convolution1D(input_dim=4 + num_bws, nb_filter=num_motifs,
filter_length=w, border_mode='valid', activation='relu',
subsample_length=1),
Dropout(0.1),
TimeDistributed(Dense(num_motifs, activation='relu')),
MaxPooling1D(pool_length=w2, stride=w2),
Bidirectional(LSTM(num_recurrent, dropout_W=0.1, dropout_U=0.1, return_sequences=True)),
Dropout(dropout_rate),
Flatten(),
Dense(num_dense, activation='relu'),
Dropout(dropout_rate),
Dense(num_tfs, activation='sigmoid')
]
forward_output = get_output(forward_input, hidden_layers)
reverse_output = get_output(reverse_input, hidden_layers)
output = merge([forward_output, reverse_output], mode='ave')
model = Model(input=[forward_input, reverse_input], output=output)
return model
def load_model(modeldir):
tfs_file = modeldir + '/chip.txt'
tfs = np.loadtxt(tfs_file, dtype=str)
if len(tfs.shape) == 0:
tfs = [str(tfs)]
else:
tfs = list(tfs)
bigwig_names_file = modeldir + '/bigwig.txt'
if not os.path.isfile(bigwig_names_file):
bigwig_names = []
else:
bigwig_names = np.loadtxt(bigwig_names_file, dtype=str)
if len(bigwig_names.shape) == 0:
bigwig_names = [str(bigwig_names)]
else:
bigwig_names = list(bigwig_names)
features_file = modeldir + '/feature.txt'
assert os.path.isfile(features_file)
features = np.loadtxt(features_file, dtype=str)
if len(features.shape) == 0:
features = [str(features)]
else:
features = list(features)
from keras.models import model_from_json
model_json_file = open(modeldir + '/model.json', 'r')
model_json = model_json_file.read()
model = model_from_json(model_json)
model.load_weights(modeldir + '/best_model.hdf5')
return tfs, bigwig_names, features, model
def load_beddata(genome, bed_file, use_meta, use_gencode, input_dir, is_sorted, chrom=None):
bed = BedTool(bed_file)
if not is_sorted:
print('Sorting BED file')
bed = bed.sort()
is_sorted = True
blacklist = make_blacklist()
print('Determining which windows are valid')
bed_intersect_blacklist_count = bed.intersect(blacklist, wa=True, c=True, sorted=is_sorted)
if chrom:
nonblacklist_bools = np.array([i.chrom==chrom and i.count==0 for i in bed_intersect_blacklist_count])
else:
nonblacklist_bools = np.array([i.count==0 for i in bed_intersect_blacklist_count])
print('Filtering away blacklisted windows')
bed_filtered = bed.intersect(blacklist, wa=True, v=True, sorted=is_sorted)
if chrom:
print('Filtering away windows not in chromosome:', chrom)
bed_filtered = subset_chroms([chrom], bed_filtered)
print('Generating test data iterator')
bigwig_names, bigwig_files_list = load_bigwigs([input_dir])
bigwig_files = bigwig_files_list[0]
if use_meta:
meta_names, meta_list = load_meta([input_dir])
meta = meta_list[0]
else:
meta = []
meta_names = None
shift = 0
if use_gencode:
cpg_bed = BedTool('resources/cpgisland.bed.gz')
cds_bed = BedTool('resources/wgEncodeGencodeBasicV19.cds.merged.bed.gz')
intron_bed = BedTool('resources/wgEncodeGencodeBasicV19.intron.merged.bed.gz')
promoter_bed = BedTool('resources/wgEncodeGencodeBasicV19.promoter.merged.bed.gz')
utr5_bed = BedTool('resources/wgEncodeGencodeBasicV19.utr5.merged.bed.gz')
utr3_bed = BedTool('resources/wgEncodeGencodeBasicV19.utr3.merged.bed.gz')
peaks_cpg_bedgraph = bed_filtered.intersect(cpg_bed, wa=True, c=True)
peaks_cds_bedgraph = bed_filtered.intersect(cds_bed, wa=True, c=True)
peaks_intron_bedgraph = bed_filtered.intersect(intron_bed, wa=True, c=True)
peaks_promoter_bedgraph = bed_filtered.intersect(promoter_bed, wa=True, c=True)
peaks_utr5_bedgraph = bed_filtered.intersect(utr5_bed, wa=True, c=True)
peaks_utr3_bedgraph = bed_filtered.intersect(utr3_bed, wa=True, c=True)
data_bed = [(window.chrom, window.start, window.stop, 0, bigwig_files, np.append(meta, np.array([cpg.count, cds.count, intron.count, promoter.count, utr5.count, utr3.count], dtype=bool)))
for window, cpg, cds, intron, promoter, utr5, utr3 in
itertools.izip(bed_filtered, peaks_cpg_bedgraph,peaks_cds_bedgraph,peaks_intron_bedgraph,peaks_promoter_bedgraph,peaks_utr5_bedgraph,peaks_utr3_bedgraph)]
else:
data_bed = [(window.chrom, window.start, window.stop, shift, bigwig_files, meta)
for window in bed_filtered]
#from data_iter import DataIterator
from data_iter import DataIterator
bigwig_rc_order = get_bigwig_rc_order(bigwig_names)
datagen_bed = DataIterator(data_bed, genome, 100, L, bigwig_rc_order, shuffle=False)
return bigwig_names, meta_names, datagen_bed, nonblacklist_bools