-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
401 lines (365 loc) · 20.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import tensorflow as tf
import numpy as np
import numpy.random as rng
import os
class idx_streamer:
"""
Index streaming class to get randomized batch size indices samples in a uniform way (using epochs).
"""
def __init__(self,N,batch_size):
"""
Constructor defining streamer parameters.
:param N: total number of samples.
:param batch_size: batch size that the streamer has to generate.
"""
self.N = N
self.sequence = np.arange(N)
self.batch_size = batch_size
self.stream = []
self.epoch = -1
def gen(self):
"""
Index stream generation function. Outputs next batch indices.
:return: List of batch indices.
"""
while len(self.stream) < self.batch_size:
rng.shuffle(self.sequence)
self.stream += list(self.sequence)
self.epoch +=1
stream = self.stream[:self.batch_size]
self.stream = self.stream[self.batch_size:]
return stream
class Trainer:
"""
Training class for the standard MADEs/MAFs classes using a tensorflow optimizer.
"""
def __init__(self, model, optimizer=tf.train.AdamOptimizer, optimizer_arguments={}):
"""
Constructor that defines the training operation.
:param model: made/maf instance to be trained.
:param optimizer: tensorflow optimizer class to be used during training.
:param optimizer_arguments: dictionary of arguments for optimizer intialization.
"""
self.model = model
if hasattr(self.model,'batch_norm') and self.model.batch_norm is True:
self.has_batch_norm = True
else:
self.has_batch_norm = False
self.train_op = optimizer(**optimizer_arguments).minimize(self.model.trn_loss)
def train(self, sess, train_data, val_data=None, p_val = 0.05, max_iterations=1000, batch_size=100,
early_stopping=20, check_every_N=5, saver_name='tmp_model', show_log=False):
"""
Training function to be called with desired parameters within a tensorflow session.
:param sess: tensorflow session where the graph is run.
:param train_data: train data to be used.
:param val_data: validation data to be used for early stopping. If None, train_data is splitted
into p_val percent for validation randomly.
:param p_val: percentage of training data randomly selected to be used for validation if
val_data is None.
:param max_iterations: maximum number of iterations for training.
:param batch_size: batch size in each training iteration.
:param early_stopping: number of iterations for early stopping criteria.
:param check_every_N: check every N iterations if model has improved and saves if so.
:param saver_name: string of name (with or without folder) where model is saved. If none is given,
a temporal model is used to save and restore best model, and removed afterwards.
"""
train_idx = np.arange(train_data.shape[0])
# If no validation data was found, split training into training and
# validation data using p_val percent of the data
if val_data == None:
rng.shuffle(train_idx)
val_data = train_data[train_idx[-int(p_val*train_data.shape[0]):]]
train_data = train_data[train_idx[:-int(p_val*train_data.shape[0])]]
train_idx = np.arange(train_data.shape[0])
# Early stopping variables
bst_loss = np.infty
early_stopping_count = 0
saver = tf.train.Saver()
# Batch index streamer
streamer = idx_streamer(train_data.shape[0],batch_size)
# Main training loop
for iteration in range(max_iterations):
batch_idx = streamer.gen()
if self.has_batch_norm:
sess.run(self.train_op,feed_dict={self.model.input:train_data[batch_idx],self.model.training:True})
else:
sess.run(self.train_op,feed_dict={self.model.input:train_data[batch_idx]})
# Early stopping check
if iteration%check_every_N == 0:
if self.has_batch_norm:
self.model.update_batch_norm(train_data,sess)
this_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:val_data})
if show_log:
train_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:train_data})
print("Iteration {:05d}, Train_loss: {:05.4f}, Val_loss: {:05.4f}".format(iteration,train_loss,this_loss))
if this_loss < bst_loss:
bst_loss = this_loss
saver.save(sess,"./"+saver_name)
early_stopping_count = 0
else:
early_stopping_count += check_every_N
if early_stopping_count >= early_stopping:
break
if show_log:
print("Training finished")
print("Best Iteration {:05d}, Val_loss: {:05.4f}".format(iteration-early_stopping,bst_loss))
# Restore best model and save batch norm mean and variance if necessary
saver.restore(sess,"./"+saver_name)
if self.has_batch_norm:
self.model.update_batch_norm(train_data,sess)
# Remove model data if temporal model data was used
if saver_name == 'tmp_model':
for file in os.listdir("./"):
if file[:len(saver_name)] == saver_name:
os.remove(file)
class ConditionalTrainer(Trainer):
"""
Training class for the conditional MADEs/MAFs classes using a tensorflow optimizer.
"""
def train(self, sess, train_data, val_data=None, p_val = 0.05, max_iterations=1000, batch_size=100,
early_stopping=20, check_every_N=5, saver_name='tmp_model', show_log=False):
"""
Training function to be called with desired parameters within a tensorflow session.
:param sess: tensorflow session where the graph is run.
:param train_data: a tuple/list of (X,Y) with training data where Y is conditioned on X.
:param val_data: a tuple/list of (X,Y) with validation data where Y is conditioned on X to be
used for early stopping. If None, train_data is splitted into p_val percent for validation
randomly.
:param p_val: percentage of training data randomly selected to be used for validation if
val_data is None.
:param max_iterations: maximum number of iterations for training.
:param batch_size: batch size in each training iteration.
:param early_stopping: number of iterations for early stopping criteria.
:param check_every_N: check every N iterations if model has improved and saves if so.
:param saver_name: string of name (with or without folder) where model is saved. If none is given,
a temporal model is used to save and restore best model, and removed afterwards.
:param show_log: boolean if showing training evolution or not.
"""
train_data_X, train_data_Y = train_data
train_idx = np.arange(train_data_X.shape[0])
# If no validation data was found, split training into training and
# validation data using p_val percent of the data
if val_data == None:
rng.shuffle(train_idx)
N = train_data_X.shape[0]
val_data_X = train_data_X[train_idx[-int(p_val*N):]]
train_data_X = train_data_X[train_idx[:-int(p_val*N)]]
val_data_Y = train_data_Y[train_idx[-int(p_val*N):]]
train_data_Y = train_data_Y[train_idx[:-int(p_val*N)]]
train_idx = np.arange(train_data_X.shape[0])
else:
val_data_X, val_data_Y = val_data
# Early stopping variables
bst_loss = np.infty
early_stopping_count = 0
saver = tf.train.Saver()
# Batch index streamer
streamer = idx_streamer(train_data_X.shape[0],batch_size)
# Main training loop
for iteration in range(max_iterations):
batch_idx = streamer.gen()
if self.has_batch_norm:
sess.run(self.train_op,feed_dict={self.model.input:train_data_X[batch_idx],
self.model.y:train_data_Y[batch_idx],
self.model.training:True})
else:
sess.run(self.train_op,feed_dict={self.model.input:train_data_X[batch_idx],
self.model.y:train_data_Y[batch_idx]})
# Early stopping check
if iteration%check_every_N == 0:
if self.has_batch_norm:
self.model.update_batch_norm([train_data_X,train_data_Y],sess)
this_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:val_data_X,
self.model.y:val_data_Y})
if show_log:
train_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:train_data_X,
self.model.y:train_data_Y})
print("Iteration {:05d}, Train_loss: {:05.4f}, Val_loss: {:05.4f}".format(iteration,train_loss,this_loss))
if this_loss < bst_loss:
bst_loss = this_loss
saver.save(sess,"./"+saver_name)
early_stopping_count = 0
else:
early_stopping_count += check_every_N
if early_stopping_count >= early_stopping:
break
if show_log:
print("Training finished")
print("Best iteration {:05d}, Val_loss: {:05.4f}".format(iteration-early_stopping,bst_loss))
# Restore best model and save batch norm mean and variance if necessary
saver.restore(sess,"./"+saver_name)
if self.has_batch_norm:
self.model.update_batch_norm([train_data_X,train_data_Y],sess)
# Remove model data if temporal model data was used
if saver_name == 'tmp_model':
for file in os.listdir("./"):
if file[:len(saver_name)] == saver_name:
os.remove(file)
class WeightedTrainer(Trainer):
"""
Training class for the conditional MADEs/MAFs classes using a tensorflow optimizer.
"""
def train(self, sess, train_data, weights, val_data=None, p_val = 0.05, max_iterations=1000, batch_size=100,
early_stopping=20, check_every_N=5, saver_name='tmp_model', show_log=False):
"""
Training function to be called with desired parameters within a tensorflow session.
:param sess: tensorflow session where the graph is run.
:param train_data: a tuple/list of (X,Y) with training data where Y is conditioned on X.
:param val_data: a tuple/list of (X,Y) with validation data where Y is conditioned on X to be
used for early stopping. If None, train_data is splitted into p_val percent for validation
randomly.
:param p_val: percentage of training data randomly selected to be used for validation if
val_data is None.
:param max_iterations: maximum number of iterations for training.
:param batch_size: batch size in each training iteration.
:param early_stopping: number of iterations for early stopping criteria.
:param check_every_N: check every N iterations if model has improved and saves if so.
:param saver_name: string of name (with or without folder) where model is saved. If none is given,
a temporal model is used to save and restore best model, and removed afterwards.
:param show_log: boolean if showing training evolution or not.
"""
train_idx = np.arange(train_data.shape[0])
# If no validation data was found, split training into training and
# validation data using p_val percent of the data
if val_data == None:
rng.shuffle(train_idx)
N = train_data.shape[0]
val_data = train_data[train_idx[-int(p_val*N):]]
train_data = train_data[train_idx[:-int(p_val*N)]]
train_weights = weights[train_idx[:-int(p_val*N)]]
val_weights = weights[train_idx[-int(p_val*N):]]
train_idx = np.arange(train_data.shape[0])
# Early stopping variables
bst_loss = np.infty
early_stopping_count = 0
saver = tf.train.Saver()
# Batch index streamer
streamer = idx_streamer(train_data.shape[0],batch_size)
# Main training loop
for iteration in range(max_iterations):
batch_idx = streamer.gen()
if self.has_batch_norm:
sess.run(self.train_op,feed_dict={self.model.input:train_data[batch_idx],self.model.training:True,
self.model.weights:train_weights[batch_idx]})
else:
sess.run(self.train_op,feed_dict={self.model.input:train_data[batch_idx],
self.model.weights:train_weights[batch_idx]})
# Early stopping check
if iteration%check_every_N == 0:
if self.has_batch_norm:
self.model.update_batch_norm(train_data,sess)
this_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:val_data,
self.model.weights:val_weights})
if show_log:
train_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:train_data,
self.model.weights:train_weights})
print("Iteration {:05d}, Train_loss: {:05.4f}, Val_loss: {:05.4f}".format(iteration,train_loss,this_loss))
if this_loss < bst_loss:
bst_loss = this_loss
saver.save(sess,"./"+saver_name)
early_stopping_count = 0
else:
early_stopping_count += check_every_N
if early_stopping_count >= early_stopping:
break
if show_log:
print("Training finished")
print("Best Iteration {:05d}, Val_loss: {:05.4f}".format(iteration-early_stopping,bst_loss))
# Restore best model and save batch norm mean and variance if necessary
saver.restore(sess,"./"+saver_name)
if self.has_batch_norm:
self.model.update_batch_norm(train_data,sess)
# Remove model data if temporal model data was used
if saver_name == 'tmp_model':
for file in os.listdir("./"):
if file[:len(saver_name)] == saver_name:
os.remove(file)
class WeightedConditionalTrainer(Trainer):
"""
Training class for the conditional MADEs/MAFs classes using a tensorflow optimizer.
"""
def train(self, sess, train_data, weights, val_data=None, p_val = 0.05, max_iterations=1000, batch_size=100,
early_stopping=20, check_every_N=5, saver_name='tmp_model', show_log=False):
"""
Training function to be called with desired parameters within a tensorflow session.
:param sess: tensorflow session where the graph is run.
:param train_data: a tuple/list of (X,Y) with training data where Y is conditioned on X.
:param val_data: a tuple/list of (X,Y) with validation data where Y is conditioned on X to be
used for early stopping. If None, train_data is splitted into p_val percent for validation
randomly.
:param p_val: percentage of training data randomly selected to be used for validation if
val_data is None.
:param max_iterations: maximum number of iterations for training.
:param batch_size: batch size in each training iteration.
:param early_stopping: number of iterations for early stopping criteria.
:param check_every_N: check every N iterations if model has improved and saves if so.
:param saver_name: string of name (with or without folder) where model is saved. If none is given,
a temporal model is used to save and restore best model, and removed afterwards.
:param show_log: boolean if showing training evolution or not.
"""
train_data_X, train_data_Y = train_data
train_idx = np.arange(train_data_X.shape[0])
# If no validation data was found, split training into training and
# validation data using p_val percent of the data
if val_data == None:
rng.shuffle(train_idx)
N = train_data_X.shape[0]
val_data_X = train_data_X[train_idx[-int(p_val*N):]]
train_data_X = train_data_X[train_idx[:-int(p_val*N)]]
val_data_Y = train_data_Y[train_idx[-int(p_val*N):]]
train_data_Y = train_data_Y[train_idx[:-int(p_val*N)]]
train_weights = weights[train_idx[:-int(p_val*N)]]
val_weights = weights[train_idx[-int(p_val*N):]]
train_idx = np.arange(train_data_X.shape[0])
else:
val_data_X, val_data_Y = val_data
# Early stopping variables
bst_loss = np.infty
early_stopping_count = 0
saver = tf.train.Saver()
# Batch index streamer
streamer = idx_streamer(train_data_X.shape[0],batch_size)
# Main training loop
for iteration in range(max_iterations):
batch_idx = streamer.gen()
if self.has_batch_norm:
sess.run(self.train_op,feed_dict={self.model.input:train_data_X[batch_idx],
self.model.y:train_data_Y[batch_idx],
self.model.weights:train_weights[batch_idx],
self.model.training:True})
else:
sess.run(self.train_op,feed_dict={self.model.input:train_data_X[batch_idx],
self.model.y:train_data_Y[batch_idx],
self.model.weights:train_weights[batch_idx]})
# Early stopping check
if iteration%check_every_N == 0:
if self.has_batch_norm:
self.model.update_batch_norm([train_data_X,train_data_Y],sess)
this_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:val_data_X,
self.model.y:val_data_Y,
self.model.weights:val_weights})
if show_log:
train_loss = sess.run(self.model.trn_loss,feed_dict={self.model.input:train_data_X,
self.model.y:train_data_Y,
self.model.weights:train_weights})
print("Iteration {:05d}, Train_loss: {:05.4f}, Val_loss: {:05.4f}".format(iteration,train_loss,this_loss))
if this_loss < bst_loss:
bst_loss = this_loss
saver.save(sess,"./"+saver_name)
early_stopping_count = 0
else:
early_stopping_count += check_every_N
if early_stopping_count >= early_stopping:
break
if show_log:
print("Training finished")
print("Best iteration {:05d}, Val_loss: {:05.4f}".format(iteration-early_stopping,bst_loss))
# Restore best model and save batch norm mean and variance if necessary
saver.restore(sess,"./"+saver_name)
if self.has_batch_norm:
self.model.update_batch_norm([train_data_X,train_data_Y],sess)
# Remove model data if temporal model data was used
if saver_name == 'tmp_model':
for file in os.listdir("./"):
if file[:len(saver_name)] == saver_name:
os.remove(file)