We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ts_model_spec_tuner
ts_model_spec_tuner <- function(.parsnip_engine = NULL){ # * Tidyeval ---- pe <- base::as.character(.parsnip_engine) # * Checks ---- if(!pe %in% c("auto_arima","auto_arima_xgboost", "ets","croston","theta", "stlm_ets","tbats","stlm_arima", "nnetar", "prophet","prophet_xgboost", "lm","glmnet","stan","spark","keras", "earth","xgboost")){ stop(call. = FALSE, base::paste0("The parameter (.parsnip_engine) value of: ", pe, ", is not supported.")) } if(pe %in% c("auto_arima","stlm_ets","tbats","stlm_arima")){ stop(call. = FALSE, base::paste0("The parameter (.parsnip_engine) value of: ", pe, ", is an auto tuned model spec already.")) } if(pe %in% c("lm")){ stop(call. = FALSE, base::paste0("The parameter (.parsnip_engine) value of: ", pe, ", has no tuning parameters.")) } # * Model Spec Tuner ---- if (pe == "auto_arima_xgboost"){ mst <- modeltime::arima_boost( trees = tune::tune() , min_n = tune::tune() , tree_depth = tune::tune() , learn_rate = tune::tune() , loss_reduction = tune::tune() , sample_size = tune::tune() , stop_iter = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "ets"){ mst <- modeltime::exp_smoothing( seasonal_period = "auto" , error = "auto" , trend = "auto" , season = "auto" , damping = "auto" , smooth_level = tune::tune() , smooth_trend = tune::tune() , smooth_seasonal = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "croston"){ mst <- modeltime::exp_smoothing( seasonal_period = "auto" , error = "auto" , trend = "auto" , season = "auto" , damping = "auto" , smooth_level = tune::tune() , smooth_trend = tune::tune() , smooth_seasonal = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "theta"){ mst <- modeltime::exp_smoothing( seasonal_period = "auto" , error = "auto" , trend = "auto" , season = "auto" , damping = "auto" , smooth_level = tune::tune() , smooth_trend = tune::tune() , smooth_seasonal = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "nnetar"){ mst <- modeltime::nnetar_reg( seasonal_period = "auto" , non_seasonal_ar = tune::tune() , seasonal_ar = tune::tune() , hidden_units = tune::tune() , num_networks = tune::tune() , penalty = tune::tune() , epochs = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "prophet"){ mst <- modeltime::prophet_reg( changepoint_num = tune::tune() , changepoint_range = tune::tune() , seasonality_yearly = "auto" , seasonality_weekly = "auto" , seasonality_daily = "auto" , prior_scale_changepoints = tune::tune() , prior_scale_seasonality = tune::tune() , prior_scale_holidays = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "prophet_xgboost"){ mst <- modeltime::prophet_boost( changepoint_num = tune::tune() , changepoint_range = tune::tune() , seasonality_yearly = FALSE , seasonality_weekly = FALSE , seasonality_daily = FALSE , prior_scale_changepoints = tune::tune() , prior_scale_seasonality = tune::tune() , prior_scale_holidays = tune::tune() , trees = tune::tune() , min_n = tune::tune() , tree_depth = tune::tune() , learn_rate = tune::tune() , loss_reduction = tune::tune() , sample_size = tune::tune() , stop_iter = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "glmnet") { mst <- parsnip::linear_reg( penalty = tune::tune() , mixture = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "stan"){ mst <- parsnip::linear_reg() %>% parsnip::set_engine( engine = pe , chains = tune::tune() , iter = tune::tune() , seed = 123 ) } else if (pe == "spark"){ mst <- parsnip::linear_reg( penalty = tune::tune() , mixture = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "keras"){ mst <- parsnip::linear_reg( penalty = tune::tune() , mixture = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "earth"){ mst <- parsnip::mars( num_terms = tune::tune() , prod_degree = tune::tune() ) %>% parsnip::set_engine(pe) } else if (pe == "xgboost"){ mst <- parsnip::boost_tree( mtry = tune::tune() , trees = tune::tune() , min_n = tune::tune() , tree_depth = tune::tune() , learn_rate = tune::tune() , loss_reduction = tune::tune() , sample_size = tune::tune() ) %>% parsnip::set_engine(pe) } # * Return ---- return(mst) }
The text was updated successfully, but these errors were encountered:
spsanderson
Successfully merging a pull request may close this issue.
The text was updated successfully, but these errors were encountered: