-
Notifications
You must be signed in to change notification settings - Fork 91
/
invcholfac.c
168 lines (160 loc) · 6.15 KB
/
invcholfac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
% y = invcholfac(u,K, perm)
% INVCHOLFAC Computes y(perm,perm) = u' * u, with u upper triangular.
%
% SEE ALSO sedumi, getada3
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
function y = invcholfac(u,K, perm)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "triuaux.h"
#define Y_OUT plhs[0]
#define NPAROUT 1
#define U_IN prhs[0]
#define K_IN prhs[1]
#define NPARINMIN 2
#define PERM_IN prhs[2]
#define NPARIN 3
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwIndex i, k, nk, nksqr, lenud, fwsiz;
double *fwork, *fworkpi, *y, *permPr;
const double *u;
mwIndex *perm, *iwork;
coneK cK;
char isperm;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
if(nrhs < NPARIN){
isperm = 0;
mxAssert(nrhs >= NPARINMIN, "invcholfac requires at least 2 input arguments.");
}
else{
permPr = mxGetPr(PERM_IN);
isperm = (mxGetM(PERM_IN) * mxGetN(PERM_IN) > 0);
}
mxAssert(nlhs <= NPAROUT, "invcholfac generates 1 output argument.");
/* ------------------------------------------------------------
Disassemble cone K structure
------------------------------------------------------------ */
conepars(K_IN, &cK);
/* ------------------------------------------------------------
Get statistics of cone K structure
------------------------------------------------------------ */
lenud = cK.rDim + cK.hDim;
/* ------------------------------------------------------------
Get input U
------------------------------------------------------------ */
u = mxGetPr(U_IN);
mxAssert(mxGetM(U_IN) * mxGetN(U_IN) == lenud, "u size mismatch");
/* ------------------------------------------------------------
Allocate output Y
------------------------------------------------------------ */
Y_OUT = mxCreateDoubleMatrix(lenud, (mwSize)1, mxREAL);
y = mxGetPr(Y_OUT);
/* ------------------------------------------------------------
Allocate fwork = double( max(cK.rMaxn^2, 2*cK.hMaxn^2) )
iwork = mwIndex(rLen+hLen)
------------------------------------------------------------ */
fwsiz = MAX(SQR(cK.rMaxn),2*SQR(cK.hMaxn));
fwork = (double *) mxCalloc( MAX(1,fwsiz), sizeof(double));
iwork = (mwIndex *) mxCalloc( MAX(1, cK.rLen + cK.hLen), sizeof(mwIndex) );
/* ------------------------------------------------------------
Let perm=iwork, and fworkpi = fwork + SQR(cK.hMaxn)
------------------------------------------------------------ */
perm = iwork;
fworkpi = fwork + SQR(cK.hMaxn);
/* ------------------------------------------------------------
Convert Fortran to C-style in perm:
------------------------------------------------------------ */
if(isperm){
for(k = 0; k < cK.rLen + cK.hLen; k++){
i = permPr[k];
perm[k] = --i;
}
/* ------------------------------------------------------------
The actual job is done here: Y = invperm(U'*U)
------------------------------------------------------------ */
for(k = 0; k < cK.rsdpN; k++){ /* real symmetric */
nk = cK.sdpNL[k];
utmulx(fwork, u,u,nk);
triu2sym(fwork,nk);
invmatperm(y,fwork,perm,nk); /* Y(perm,perm) = Z */
nksqr = SQR(nk);
y += nksqr; u += nksqr;
perm += nk;
}
for(; k < cK.sdpN; k++){
nk = cK.sdpNL[k];
nksqr = SQR(nk);
prpiutmulx(fwork,fworkpi, u,u+nksqr,u,u+nksqr, nk);
triu2herm(fwork,fworkpi,nk);
invmatperm(y,fwork,perm,nk); /* Y(perm,perm) = Z */
invmatperm(y+nksqr,fworkpi,perm,nk); /* imaginary part */
nksqr += nksqr;
y += nksqr; u += nksqr;
perm += nk;
}
}
else{
/* ------------------------------------------------------------
Without permutation, it's simply Y = U'*U.
------------------------------------------------------------ */
for(k = 0; k < cK.rsdpN; k++){ /* real symmetric */
nk = cK.sdpNL[k];
utmulx(y, u,u,nk);
triu2sym(y,nk);
nksqr = SQR(nk);
y += nksqr; u += nksqr;
}
for(; k < cK.sdpN; k++){
nk = cK.sdpNL[k];
nksqr = SQR(nk);
prpiutmulx(y,y+nksqr, u,u+nksqr,u,u+nksqr, nk);
triu2herm(y,y+nksqr,nk);
nksqr += nksqr;
y += nksqr; u += nksqr;
}
}
/* ------------------------------------------------------------
Release working arrays.
------------------------------------------------------------ */
mxFree(fwork);
mxFree(iwork);
}