-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtranslate.py
executable file
·73 lines (61 loc) · 3.04 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
from preprocess import Vocab, CDDataset
import torch
from S2SModel import S2SModel
import sys
parser = argparse.ArgumentParser(description='translate.py')
parser.add_argument('-model', required=True,
help='Path to model .pt file')
parser.add_argument('-src', required=True,
help='Source sequence to decode (one line per sequence)')
parser.add_argument('-output', default='pred.txt',
help="""Path to output the predictions (each line will
be the decoded sequence""")
parser.add_argument('-beam_size', type=int, default=5,
help='Beam size')
parser.add_argument('-batch_size', type=int, default=30,
help='Batch size')
parser.add_argument('-max_sent_length', type=int, default=100,
help='Maximum sentence length.')
parser.add_argument('-test_tgt_min_seq_length', type=int, default=0,
help='Maximum sentence length.')
parser.add_argument('-replace_unk', action="store_true",
help="""Replace the generated UNK tokens with the source
token that had highest attention weight. If phrase_table
is provided, it will lookup the identified source token and
give the corresponding target token. If it is not provided (or the identified source token does not exist in the table) then it will copy the source token""")
parser.add_argument('-attention', action="store_true",
help='Print scores and predictions for each sentence')
parser.add_argument('-dataset', type=str, default="",
help='File to dump beam information to.')
parser.add_argument('-trunc', type=int, default=-1,
help="Device to run on")
class Bunch:
def __init__(self, **kwds):
self.__dict__.update(kwds)
def main():
opt = parser.parse_args()
beam_size = opt.beam_size
torch.cuda.set_device(0)
checkpoint = torch.load(opt.model, map_location=lambda storage, loc: storage)
vocabs = checkpoint['vocab']
vocabs['mask'] = vocabs['mask'].cuda()
opts_for_preprocess = Bunch(dataset=opt.dataset)
test = CDDataset(opt.src, opts_for_preprocess, test=True, trunc=opt.trunc, test_tgt_min_seq_length=opt.test_tgt_min_seq_length)
# Hack, pass src as target as well
test.toNumbers(checkpoint['vocab'], prevRules=False)
total_test = test.compute_batches(opt.batch_size, checkpoint['vocab'], checkpoint['opt'].max_chars, 0, 1, checkpoint['opt'].decoder_type, randomize=False, no_filter=True)
sys.stderr.write('Total test: {}'.format(total_test))
sys.stderr.flush()
model = S2SModel(checkpoint['opt'], vocabs)
model.load_state_dict(checkpoint['model'])
model.cuda()
model.eval()
predictions = []
for idx, batch in enumerate(test.batches): # For each batch
curr_batch_size = batch['seq2seq'].size(1)
predictions.append(model.predict(batch, opt))
for idx, prediction in enumerate(predictions):
prediction.output(opt.output, idx, attention=opt.attention)
if __name__ == "__main__":
main()