-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfocator_id30b.py
642 lines (469 loc) · 25.2 KB
/
transfocator_id30b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
1import numpy
import xraylib
"""
transfocator_id30b : transfocator for id13b:
It can:
1) guess the lens configuration (number of lenses for each type) for a given photon energy
and target image size. Use transfocator_compute_configuration() for this task
2) for a given transfocator configuration, compute the main optical parameters
(image size, focal distance, focal position and divergence).
Use transfocator_compute_parameters() for this task
3) Performs full ray tracing. Use id30b_ray_tracing() for this task
Note that for the optimization and parameters calculations the transfocator configuration is
given in keywords. For ray tracing calculations many parameters of the transfocator are hard coded
with the values of id30b
See main program for examples.
Dependencies:
Numpy
xraylib (to compute refracion indices)
Shadow (for ray tracing only)
matplotlib (for some plots of ray=tracing)
Side effects:
When running ray tracing some files are created.
MODIFICATION HISTORY:
2015-03-25 srio@esrf.eu, written
"""
__author__ = "Manuel Sanchez del Rio"
__contact__ = "srio@esrf.eu"
__copyright__ = "ESRF, 2015"
def transfocator_compute_configuration(photon_energy_ev,s_target,\
symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\
nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \
sigmaz=6.46e-4, alpha = 0.55, \
tf_p=5960, tf_q=3800, verbose=1 ):
"""
Computes the optimum transfocator configuration for a given photon energy and target image size.
All length units are cm
:param photon_energy_ev: the photon energy in eV
:param s_target: the target image size in cm.
:param symbol: the chemical symbol of the lens material of each type. Default symbol=["Be","Be","Be"]
:param density: the density of each type of lens. Default: density=[1.845,1.845,1.845]
:param nlenses_max: the maximum allowed number of lenases for each type of lens. nlenses_max = [15,3,1]
:param nlenses_radii: the radii in cm of each type of lens. Default: nlenses_radii = [500e-4,1000e-4,1500e-4]
:param lens_diameter: the physical diameter (acceptance) in cm of the lenses. If different for each type of lens,
consider the smaller one. Default: lens_diameter=0.05
:param sigmaz: the sigma (standard deviation) of the source in cm
:param alpha: an adjustable parameter in [0,1](see doc). Default: 0.55 (it is 0.76 for pure Gaussian beams)
:param tf_p: the distance source-transfocator in cm
:param tf_q: the distance transfocator-image in cm
:param:verbose: set to 1 for verbose text output
:return: a list with the number of lenses of each type.
"""
if s_target < 2.35*sigmaz*tf_q/tf_p:
print("Source size FWHM is: %f um"%(1e4*2.35*sigmaz))
print("Maximum Demagnifications is: %f um"%(tf_p/tf_q))
print("Minimum possible size is: %f um"%(1e4*2.35*sigmaz*tf_q/tf_p))
print("Error: redefine size")
return None
deltas = [(1.0 - xraylib.Refractive_Index_Re(symbol[i],photon_energy_ev*1e-3,density[i])) \
for i in range(len(symbol))]
focal_q_target = _tansfocator_guess_focal_position( s_target, p=tf_p, q=tf_q, sigmaz=sigmaz, alpha=alpha, \
lens_diameter=lens_diameter,method=2)
focal_f_target = 1.0 / (1.0/focal_q_target + 1.0/tf_p)
div_q_target = alpha * lens_diameter / focal_q_target
#corrections for extreme cases
source_demagnified = 2.35*sigmaz*focal_q_target/tf_p
if source_demagnified > lens_diameter: source_demagnified = lens_diameter
s_target_calc = numpy.sqrt( (div_q_target*(tf_q-focal_q_target))**2 + source_demagnified**2)
nlenses_target = _transfocator_guess_configuration(focal_f_target,deltas=deltas,\
nlenses_max=nlenses_max,radii=nlenses_radii, )
if verbose:
print("transfocator_compute_configuration: focal_f_target: %f"%(focal_f_target))
print("transfocator_compute_configuration: focal_q_target: %f cm"%(focal_q_target))
print("transfocator_compute_configuration: s_target: %f um"%(s_target_calc*1e4))
print("transfocator_compute_configuration: nlenses_target: ",nlenses_target)
return nlenses_target
def transfocator_compute_parameters(photon_energy_ev, nlenses_target,\
symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\
nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \
sigmaz=6.46e-4, alpha = 0.55, \
tf_p=5960, tf_q=3800 ):
"""
Computes the parameters of the optical performances of a given transgocator configuration.
returns a l
All length units are cm
:param photon_energy_ev:
:param nlenses_target: a list with the lens configuration, i.e. the number of lenses of each type.
:param symbol: the chemical symbol of the lens material of each type. Default symbol=["Be","Be","Be"]
:param density: the density of each type of lens. Default: density=[1.845,1.845,1.845]
:param nlenses_max: the maximum allowed number of lenases for each type of lens. nlenses_max = [15,3,1]
TODO: remove (not used)
:param nlenses_radii: the radii in cm of each type of lens. Default: nlenses_radii = [500e-4,1000e-4,1500e-4]
:param lens_diameter: the physical diameter (acceptance) in cm of the lenses. If different for each type of lens,
consider the smaller one. Default: lens_diameter=0.05
:param sigmaz: the sigma (standard deviation) of the source in cm
:param alpha: an adjustable parameter in [0,1](see doc). Default: 0.55 (it is 0.76 for pure Gaussian beams)
:param tf_p: the distance source-transfocator in cm
:param tf_q: the distance transfocator-image in cm
:return: a list with parameters (image_siza, lens_focal_distance,
focal_position from transfocator center, divergence of beam after the transfocator)
"""
deltas = [(1.0 - xraylib.Refractive_Index_Re(symbol[i],photon_energy_ev*1e-3,density[i])) \
for i in range(len(symbol))]
focal_f = _transfocator_calculate_focal_distance( deltas=deltas,\
nlenses=nlenses_target,radii=nlenses_radii)
focal_q = 1.0 / (1.0/focal_f - 1.0/tf_p)
div_q = alpha * lens_diameter / focal_q
#corrections
source_demagnified = 2.35*sigmaz*focal_q/tf_p
if source_demagnified > lens_diameter: source_demagnified = lens_diameter
s_target = numpy.sqrt( (div_q*(tf_q-focal_q))**2 + (source_demagnified)**2 )
return (s_target,focal_f,focal_q,div_q)
def transfocator_nlenses_to_slots(nlenses,nlenses_max=None):
"""
converts the transfocator configuration from a list of the number of lenses of each type,
into a list of active (1) or inactive (0) actuators for the slots.
:param nlenses: the list with number of lenses (e.g., [5,2,0]
:param nlenses_max: the maximum number of lenses of each type, usually powers of two minus one.
E.g. [15,3,1]
:return: a list of on (1) and off (0) slots, e.g., [1, 0, 1, 0, 0, 1, 0]
(first type: 1*1+0*2+1*4+0*8=5, second type: 0*1+1*2=2, third type: 0*1=0)
"""
if nlenses_max == None:
nlenses_max = nlenses
ss = []
for i,iopt in enumerate(nlenses):
if iopt > nlenses_max[i]:
print("Error: i:%d, nlenses: %d, nlenses_max: %d"%(i,iopt,nlenses_max[i]))
ncharacters = len("{0:b}".format(nlenses_max[i]))
si = list( ("{0:0%db}"%(ncharacters)).format(int(iopt)) )
si.reverse()
ss += si
on_off = [int(i) for i in ss]
#print("transfocator_nlenses_to_slots: nlenses_max: ",nlenses_max," nlenses: ",nlenses," slots: ",on_off)
return on_off
def _transfocator_calculate_focal_distance(deltas=[0.999998],nlenses=[1],radii=[500e-4]):
inverse_focal_distance = 0.0
for i,nlensesi in enumerate(nlenses):
if nlensesi > 0:
focal_distance_i = radii[i] / (2.*nlensesi*deltas[i])
inverse_focal_distance += 1.0/focal_distance_i
if inverse_focal_distance == 0:
return 99999999999999999999999999.
else:
return 1.0/inverse_focal_distance
def _tansfocator_guess_focal_position( s_target, p=5960., q=3800.0, sigmaz=6.46e-4, \
alpha=0.66, lens_diameter=0.05, method=2):
x = 1e15
if method == 1: # simple sum
AA = 2.35*sigmaz/p
BB = -(s_target + alpha * lens_diameter)
CC = alpha*lens_diameter*q
cc = numpy.roots([AA,BB,CC])
x = cc[1]
return x
if method == 2: # sum in quadrature
AA = ( (2.35*sigmaz)**2)/(p**2)
BB = 0.0
CC = alpha**2 * lens_diameter**2 - s_target**2
DD = - 2.0 * alpha**2 * lens_diameter**2 * q
EE = alpha**2 * lens_diameter**2 * q**2
cc = numpy.roots([AA,BB,CC,DD,EE])
for i,cci in enumerate(cc):
if numpy.imag(cci) == 0:
return numpy.real(cci)
return x
def _transfocator_guess_configuration(focal_f_target,deltas=[0.999998],nlenses_max=[15],radii=[500e-4]):
nn = len(nlenses_max)
ncombinations = (1+nlenses_max[0]) * (1+nlenses_max[1]) * (1+nlenses_max[2])
icombinations = 0
aa = numpy.zeros((3,ncombinations),dtype=int)
bb = numpy.zeros(ncombinations)
for i0 in range(1+nlenses_max[0]):
for i1 in range(1+nlenses_max[1]):
for i2 in range(1+nlenses_max[2]):
aa[0,icombinations] = i0
aa[1,icombinations] = i1
aa[2,icombinations] = i2
bb[icombinations] = focal_f_target - _transfocator_calculate_focal_distance(deltas=deltas,nlenses=[i0,i1,i2],radii=radii)
icombinations += 1
bb1 = numpy.abs(bb)
ibest = bb1.argmin()
return (aa[:,ibest]).tolist()
#
#
#
def id30b_ray_tracing(emittH=4e-9,emittV=1e-11,betaH=35.6,betaV=3.0,number_of_rays=50000,\
density=1.845,symbol="Be",tf_p=1000.0,tf_q=1000.0,lens_diameter=0.05,\
slots_max=None,slots_on_off=None,photon_energy_ev=14000.0,\
slots_lens_thickness=None,slots_steps=None,slots_radii=None,\
s_target=10e-4,focal_f=10.0,focal_q=10.0,div_q=1e-6):
#=======================================================================================================================
# Gaussian undulator source
#=======================================================================================================================
import Shadow
#import Shadow.ShadowPreprocessorsXraylib as sx
sigmaXp = numpy.sqrt(emittH/betaH)
sigmaZp = numpy.sqrt(emittV/betaV)
sigmaX = emittH/sigmaXp
sigmaZ = emittV/sigmaZp
print("\n\nElectron sizes H:%f um, V:%fu m;\nelectron divergences: H:%f urad, V:%f urad"%\
(sigmaX*1e6, sigmaZ*1e6, sigmaXp*1e6, sigmaZp*1e6))
# set Gaussian source
src = Shadow.Source()
src.set_energy_monochromatic(photon_energy_ev)
src.set_gauss(sigmaX*1e2,sigmaZ*1e2,sigmaXp,sigmaZp)
print("\n\nElectron sizes stored H:%f um, V:%f um;\nelectron divergences: H:%f urad, V:%f urad"%\
(src.SIGMAX*1e4,src.SIGMAZ*1e4,src.SIGDIX*1e6,src.SIGDIZ*1e6))
src.apply_gaussian_undulator(undulator_length_in_m=2.8, user_unit_to_m=1e-2, verbose=1)
print("\n\nElectron sizes stored (undulator) H:%f um, V:%f um;\nelectron divergences: H:%f urad, V:%f urad"%\
(src.SIGMAX*1e4,src.SIGMAZ*1e4,src.SIGDIX*1e6,src.SIGDIZ*1e6))
print("\n\nSource size in vertical FWHM: %f um\n"%\
(2.35*src.SIGMAZ*1e4))
src.NPOINT = number_of_rays
src.ISTAR1 = 0 # 677543155
src.write("start.00")
# create source
beam = Shadow.Beam()
beam.genSource(src)
beam.write("begin.dat")
src.write("end.00")
#=======================================================================================================================
# complete the (detailed) transfocator description
#=======================================================================================================================
print("\nSetting detailed Transfocator for ID30B")
slots_nlenses = numpy.array(slots_max)*numpy.array(slots_on_off)
slots_empty = (numpy.array(slots_max)-slots_nlenses)
#
####interactive=True, SYMBOL="SiC",DENSITY=3.217,FILE="prerefl.dat",E_MIN=100.0,E_MAX=20000.0,E_STEP=100.0
Shadow.ShadowPreprocessorsXraylib.prerefl(interactive=False,E_MIN=2000.0,E_MAX=55000.0,E_STEP=100.0,\
DENSITY=density,SYMBOL=symbol,FILE="Be2_55.dat" )
nslots = len(slots_max)
prerefl_file = ["Be2_55.dat" for i in range(nslots)]
print("slots_max: ",slots_max)
#print("slots_target: ",slots_target)
print("slots_on_off: ",slots_on_off)
print("slots_steps: ",slots_steps)
print("slots_radii: ",slots_radii)
print("slots_nlenses: ",slots_nlenses)
print("slots_empty: ",slots_empty)
#calculate distances, nlenses and slots_empty
# these are distances p and q with TF length removed
tf_length = numpy.array(slots_steps).sum() #tf length in cm
tf_fs_before = tf_p - 0.5*tf_length #distance from source to center of transfocator
tf_fs_after = tf_q - 0.5*tf_length # distance from center of transfocator to image
# for each slot, these are the empty distances before and after the lenses
tf_p0 = numpy.zeros(nslots)
tf_q0 = numpy.array(slots_steps) - (numpy.array(slots_max) * slots_lens_thickness)
# add now the p q distances
tf_p0[0] += tf_fs_before
tf_q0[-1] += tf_fs_after
print("tf_p0: ",tf_p0)
print("tf_q0: ",tf_q0)
print("tf_length: %f cm"%(tf_length))
# build transfocator
tf = Shadow.CompoundOE(name='TF ID30B')
tf.append_transfocator(tf_p0.tolist(), tf_q0.tolist(), \
nlenses=slots_nlenses.tolist(), radius=slots_radii, slots_empty=slots_empty.tolist(),\
thickness=slots_lens_thickness, prerefl_file=prerefl_file,\
surface_shape=4, convex_to_the_beam=0, diameter=lens_diameter,\
cylinder_angle=0.0,interthickness=50e-4,use_ccc=0)
itmp = input("SHADOW Source complete. Do you want to run SHADOR trace? [1=Yes,0=No]: ")
if str(itmp) != "1":
return
#trace system
tf.dump_systemfile()
beam.traceCompoundOE(tf,write_start_files=0,write_end_files=0,write_star_files=0, write_mirr_files=0)
#write only last result file
beam.write("star_tf.dat")
print("\nFile written to disk: star_tf.dat")
#
# #ideal calculations
#
print("\n\n\n")
print("=============================================== TRANSFOCATOR OUTPUTS ==========================================")
print("\nTHEORETICAL results: ")
print("REMIND-----With these lenses we obtained (analytically): ")
print("REMIND----- focal_f: %f cm"%(focal_f))
print("REMIND----- focal_q: %f cm"%(focal_q))
print("REMIND----- s_target: %f um"%(s_target*1e4))
demagnification_factor = tf_p/focal_q
theoretical_focal_size = src.SIGMAZ*2.35/demagnification_factor
# analyze shadow results
print("\nSHADOW results: ")
st1 = beam.get_standard_deviation(3,ref=0)
st2 = beam.get_standard_deviation(3,ref=1)
print(" stDev*2.35: unweighted: %f um, weighted: %f um "%(st1*2.35*1e4,st2*2.35*1e4))
tk = beam.histo1(3, nbins=75, ref=1, nolost=1, write="HISTO1")
print(" Histogram FWHM: %f um "%(1e4*tk["fwhm"]))
print(" Transmitted intensity: %f (source was: %d) (transmission is %f %%) "%(beam.intensity(nolost=1), src.NPOINT, beam.intensity(nolost=1)/src.NPOINT*100))
#scan around image
xx1 = numpy.linspace(0.0,1.1*tf_fs_after,11) # position from TF exit plane
#xx0 = focal_q - tf_length*0.5
xx0 = focal_q - tf_length*0.5 # position of focus from TF exit plane
xx2 = numpy.linspace(xx0-100.0,xx0+100,21) # position from TF exit plane
xx3 = numpy.array([tf_fs_after])
xx = numpy.concatenate(([-0.5*tf_length],xx1,xx2,[tf_fs_after]))
xx.sort()
f = open("id30b.spec","w")
f.write("#F id30b.spec\n")
f.write("\n#S 1 calculations for id30b transfocator\n")
f.write("#N 8\n")
labels = " %18s %18s %18s %18s %18s %18s %18s %18s"%\
("pos from source","pos from image","[pos from TF]", "pos from TF center", "pos from focus",\
"fwhm shadow(stdev)","fwhm shadow(histo)","fwhm theoretical")
f.write("#L "+labels+"\n")
out = numpy.zeros((8,xx.size))
for i,pos in enumerate(xx):
beam2 = beam.duplicate()
beam2.retrace(-tf_fs_after+pos)
fwhm1 = 2.35*1e4*beam2.get_standard_deviation(3,ref=1,nolost=1)
tk = beam2.histo1(3, nbins=75, ref=1, nolost=1)
fwhm2 = 1e4*tk["fwhm"]
#fwhm_th = 1e4*transfocator_calculate_estimated_size(pos,diameter=diameter,focal_distance=focal_q)
fwhm_th2 = 1e4*numpy.sqrt( (div_q*(pos+0.5*tf_length-focal_q))**2 + theoretical_focal_size**2 )
#fwhm_th2 = 1e4*( numpy.abs(div_q*(pos-focal_q+0.5*tf_length)) + theoretical_focal_size )
out[0,i] = tf_fs_before+tf_length+pos
out[1,i] = -tf_fs_after+pos
out[2,i] = pos
out[3,i] = pos+0.5*tf_length
out[4,i] = pos+0.5*tf_length-focal_q
out[5,i] = fwhm1
out[6,i] = fwhm2
out[7,i] = fwhm_th2
f.write(" %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f %18.3f \n"%\
(tf_fs_before+tf_length+pos,\
-tf_fs_after+pos,\
pos,\
pos+0.5*tf_length,\
pos+0.5*tf_length-focal_q,\
fwhm1,fwhm2,fwhm_th2))
f.close()
print("File with beam evolution written to disk: id30b.spec")
#
# plots
#
itmp = input("Do you want to plot the intensity distribution and beam evolution? [1=yes,0=No]")
if str(itmp) != "1":
return
import matplotlib.pylab as plt
plt.figure(1)
plt.plot(out[1,:],out[5,:],'blue',label="fwhm shadow(stdev)")
plt.plot(out[1,:],out[6,:],'green',label="fwhm shadow(histo1)")
plt.plot(out[1,:],out[7,:],'red',label="fwhm theoretical")
plt.xlabel("Distance from image plane [cm]")
plt.ylabel("spot size [um] ")
ax = plt.subplot(111)
ax.legend(bbox_to_anchor=(1.1, 1.05))
print("Kill graphic to continue.")
plt.show()
Shadow.ShadowTools.histo1(beam,3,nbins=75,ref=1,nolost=1,calfwhm=1)
input("<Enter> to finish.")
return None
def id30b_full_simulation(photon_energy_ev=14000.0,s_target=20.0e-4,nlenses_target=None):
if nlenses_target == None:
force_nlenses = 0
else:
force_nlenses = 1
#
# define lens setup (general)
#
xrl_symbol = ["Be","Be","Be"]
xrl_density = [1.845,1.845,1.845]
lens_diameter = 0.05
nlenses_max = [15,3,1]
nlenses_radii = [500e-4,1000e-4,1500e-4]
sigmaz=6.46e-4
alpha = 0.55
tf_p = 5960 # position of the TF measured from the center of the transfocator
tf_q = 9760 - tf_p # position of the image plane measured from the center of the transfocator
if s_target < 2.35*sigmaz*tf_q/tf_p:
print("Source size FWHM is: %f um"%(1e4*2.35*sigmaz))
print("Maximum Demagnifications is: %f um"%(tf_p/tf_q))
print("Minimum possible size is: %f um"%(1e4*2.35*sigmaz*tf_q/tf_p))
print("Error: redefine size")
return
print("================================== TRANSFOCATOR INPUTS ")
print("Photon energy: %f eV"%(photon_energy_ev))
if force_nlenses:
print("Forced_nlenses: ",nlenses_target)
else:
print("target size: %f cm"%(s_target))
print("materials: ",xrl_symbol)
print("densities: ",xrl_density)
print("Lens diameter: %f cm"%(lens_diameter))
print("nlenses_max:",nlenses_max,"nlenses_radii: ",nlenses_radii)
print("Source size (sigma): %f um, FWHM: %f um"%(1e4*sigmaz,2.35*1e4*sigmaz))
print("Distances: tf_p: %f cm, tf_q: %f cm"%(tf_p,tf_q))
print("alpha: %f"%(alpha))
print("========================================================")
if force_nlenses != 1:
nlenses_target = transfocator_compute_configuration(photon_energy_ev,s_target,\
symbol=xrl_symbol,density=xrl_density,\
nlenses_max=nlenses_max, nlenses_radii=nlenses_radii, lens_diameter=lens_diameter, \
sigmaz=sigmaz, alpha=alpha, \
tf_p=tf_p,tf_q=tf_q, verbose=1)
(s_target,focal_f,focal_q,div_q) = \
transfocator_compute_parameters(photon_energy_ev, nlenses_target,\
symbol=xrl_symbol,density=xrl_density,\
nlenses_max=nlenses_max, nlenses_radii=nlenses_radii, \
lens_diameter=lens_diameter,\
sigmaz=sigmaz, alpha=alpha,\
tf_p=tf_p,tf_q=tf_q)
slots_max = [ 1, 2, 4, 8, 1, 2, 1] # slots
slots_on_off = transfocator_nlenses_to_slots(nlenses_target,nlenses_max=nlenses_max)
print("=============================== TRANSFOCATOR SET")
#print("deltas: ",deltas)
if force_nlenses != 1:
print("nlenses_target (optimized): ",nlenses_target)
else:
print("nlenses_target (forced): ",nlenses_target)
print("With these lenses we obtain: ")
print(" focal_f: %f cm"%(focal_f))
print(" focal_q: %f cm"%(focal_q))
print(" s_target: %f um"%(s_target*1e4))
print(" slots_max: ",slots_max)
print(" slots_on_off: ",slots_on_off)
print("==================================================")
# for theoretical calculations use the focal position and distances given by the target nlenses
itmp = input("Start SHADOW simulation? [1=yes,0=No]: ")
if str(itmp) != "1":
return
#=======================================================================================================================
# Inputs
#=======================================================================================================================
emittH = 3.9e-9
emittV = 10e-12
betaH = 35.6
betaV = 3.0
number_of_rays = 50000
nslots = len(slots_max)
slots_lens_thickness = [0.3 for i in range(nslots)] #total thickness of a single lens in cm
# for each slot, positional gap of the first lens in cm
slots_steps = [ 4, 4, 1.9, 6.1, 4, 4, slots_lens_thickness[-1]]
slots_radii = [.05, .05, .05, .05, 0.1, 0.1, 0.15] # radii of the lenses in cm
AAA= 333
id30b_ray_tracing(emittH=emittH,emittV=emittV,betaH=betaH,betaV=betaV,number_of_rays=number_of_rays,\
density=xrl_density[0],symbol=xrl_symbol[0],tf_p=tf_p,tf_q=tf_q,lens_diameter=lens_diameter,\
slots_max=slots_max,slots_on_off=slots_on_off,photon_energy_ev=photon_energy_ev,\
slots_lens_thickness=slots_lens_thickness,slots_steps=slots_steps,slots_radii=slots_radii,\
s_target=s_target,focal_f=focal_f,focal_q=focal_q,div_q=div_q)
def main():
# this performs the full simulation: calculates the optimum configuration and do the ray-tracing
itmp = input("Enter: \n 0 = optimization calculation only \n 1 = full simulation (ray tracing) \n?> ")
photon_energy_kev = float(input("Enter photon energy in keV: "))
s_target_um = float(input("Enter target focal dimension in microns: "))
if str(itmp) == "1":
id30b_full_simulation(photon_energy_ev=photon_energy_kev*1e3,s_target=s_target_um*1e-4,nlenses_target=None)
#id30b_full_simulation(photon_energy_ev=14000.0,s_target=20.0e-4,nlenses_target=[3,1,1])
else:
#this performs the calculation of the optimizad configuration
nlenses_optimum = transfocator_compute_configuration(photon_energy_kev*1e3,s_target_um*1e-4,\
symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\
nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \
sigmaz=6.46e-4, alpha = 0.55, \
tf_p=5960, tf_q=3800, verbose=0 )
print("Optimum lens configuration is: ",nlenses_optimum)
if nlenses_optimum == None:
return
print("Activate slots: ",transfocator_nlenses_to_slots(nlenses_optimum,nlenses_max=[15,3,1]))
# this calculates the parameters (image size, etc) for a given lens configuration
(size, f, q_f, div) = transfocator_compute_parameters(photon_energy_kev*1e3, nlenses_optimum,\
symbol=["Be","Be","Be"], density=[1.845,1.845,1.845],\
nlenses_max = [15,3,1], nlenses_radii = [500e-4,1000e-4,1500e-4], lens_diameter=0.05, \
sigmaz=6.46e-4, alpha = 0.55, \
tf_p=5960, tf_q=3800 )
print("For given configuration ",nlenses_optimum," we get: ")
print(" size: %f cm, focal length: %f cm, focal distance: %f cm, divergence: %f rad: "%(size, f, q_f, div))
if __name__ == "__main__":
main()