-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
234 lines (204 loc) · 6.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
from tqdm import tqdm
import torchvision
import torchvision.transforms as transforms
import re
import os
import argparse
import re
import logging
from src.models.resnet import ResNet18
from src.utils.misc_utils import progress_bar
from src.utils.load_data import get_data
from src.hparams.registry import get_hparams
from src.models.registry import get_model
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument(
'--hparams', type=str, required=True, help='Hyperparameters string')
parser.add_argument(
'--steps', default=0, type=int, help='No of steps in an epoch')
parser.add_argument(
'--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument(
'--output_dir',
type=str,
help='Output directory for storing ckpts. Default is in runs/hparams')
parser.add_argument(
'--use_colab', type=bool, default=False, help='Use Google colaboratory')
args = parser.parse_args()
hparams = get_hparams(args.hparams)
if not args.use_colab:
OUTPUT_DIR = 'runs/' + args.hparams if args.output_dir is None else args.output_dir
output_eval_file = 'runs/results_' + args.hparams + '.txt'
if args.output_dir is None and not os.path.isdir('runs'):
os.mkdir('runs')
else:
from google.colab import drive
drive.mount('/content/gdrive')
OUTPUT_DIR = '/content/gdrive/My Drive/runs'
output_eval_file = OUTPUT_DIR + '/results_' + args.hparams + '.txt'
if not os.path.isdir(OUTPUT_DIR): os.mkdir(OUTPUT_DIR)
OUTPUT_DIR = OUTPUT_DIR + '/' + args.hparams
if not os.path.isdir(OUTPUT_DIR): os.mkdir(OUTPUT_DIR)
if args.resume:
filemode = 'a'
else:
filemode = 'w'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
start_step = 0 # start from epoch 0 or last checkpoint epoch
# get the data
trainloader, testloader = get_data(hparams.batch_size)
"""Fucntion to instantiate the resnet model and return it"""
logging.basicConfig(
filename=output_eval_file,
format='%(asctime)s %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO,
filemode=filemode)
logger = logging.getLogger(__name__)
"""Function to print current Learning rate"""
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def create_model():
net = get_model(hparams.model)
net = net.to(device)
optimizer = optim.SGD(
net.parameters(),
lr=hparams.learning_rate,
momentum=hparams.momentum,
weight_decay=hparams.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[40000, 60000, 80000], gamma=0.1)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(OUTPUT_DIR), 'Error: no checkpoint directory found!'
model_dir = (OUTPUT_DIR + '/' + 'ckpt-' + str(
max([
int(re.findall("[0-9]+\.", x)[0][:-1])
for x in os.listdir(OUTPUT_DIR)
])) + '.t7')
print(model_dir)
checkpoint = torch.load(model_dir)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
global start_step
start_step = checkpoint['step']
scheduler.load_state_dict(checkpoint['scheduler'])
optimizer.load_state_dict(checkpoint['optimizer'])
criterion = nn.CrossEntropyLoss()
return net, criterion, optimizer, scheduler
# Training
def train(steps,
trainloader,
net,
criterion,
optimizer,
scheduler,
test_loader=None):
net.train()
train_loss = 0
correct = 0
total = 0
n_epochs = (start_step // len(trainloader)) + 1
batch_idx = 0
iterator = iter(trainloader)
for batch_idx in tqdm(range(start_step, steps, 1)):
hparams.gs = batch_idx
if batch_idx == n_epochs * len(trainloader):
n_epochs = n_epochs + 1
iterator = iter(trainloader)
inputs, targets = iterator.next()
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs, hparams)
loss = criterion(outputs, targets)
loss.backward()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % hparams.eval_and_save_every == 0:
print("\nTrain Accuracy: {}, Loss: {}".format((correct / total), loss))
logger.info("Steps {}".format(batch_idx))
logger.info("Train Accuracy: {}, Loss: {}".format((correct / total),
loss))
test(hparams.eval_steps, testloader, net, criterion, scheduler, optimizer,
int(batch_idx))
optimizer.step()
scheduler.step()
train_loss += loss.item()
def test(steps, testloader, net, criterion, scheduler, optimizer, curr_step):
net.eval()
test_loss = 0
correct = 0
total = 0
n_epochs = 1
with torch.no_grad():
iterator = iter(testloader)
for batch_idx in range(steps):
if batch_idx == (n_epochs * len(testloader)):
n_epochs = n_epochs + 1
iterator = iter(testloader)
inputs, targets = iterator.next()
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs, hparams)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# Save checkpoint.
acc = 100. * correct / total
print("Test Accuracy: ", acc)
logger.info("Test Accuracy: {} \n".format(acc))
print('Saving..')
print("Filename " + OUTPUT_DIR + '/ckpt-{}.t7'.format(str(curr_step)))
state = {
'net': net.state_dict(),
'scheduler': scheduler.state_dict(),
'acc': acc,
'step': curr_step,
'optimizer': optimizer.state_dict(),
}
if not os.path.isdir(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
torch.save(state, OUTPUT_DIR + '/ckpt-{}.t7'.format(str(curr_step)))
net.train()
if __name__ == "__main__":
net, criterion, optimizer, scheduler = create_model()
trainloader, testloader = get_data()
print(vars(hparams))
if args.steps != 0:
train(
args.steps,
trainloader,
net,
criterion,
optimizer,
scheduler,
test_loader=testloader)
test(args.steps, testloader, net, criterion, scheduler, optimizer,
args.steps + 1)
else:
steps = (int)((hparams.num_epochs * 50000) / hparams.batch_size)
train(
steps,
trainloader,
net,
criterion,
optimizer,
scheduler,
test_loader=testloader)
test(hparams.eval_steps, testloader, net, criterion, scheduler, optimizer,
steps + 1)