-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
267 lines (225 loc) · 10.8 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# @Time : 2023/1/22 16:22
# @Author : tk
# @FileName: data_utils.py
import glob
import sys
import os
from functools import cache
sys.path.append(os.path.join(os.path.dirname(__file__)))
import pickle
import warnings
import copy
import json
import random
import torch
from PIL import Image
import numpy as np
from numpy_io.pytorch_loader.tokenizer_config_helper import load_configure
from deep_training.utils.hf import BatchFeatureDetr
from typing import Union, Optional, List, Any
from deep_training.data_helper import DataHelper, ModelArguments, TrainingArguments, TrainingArgumentsHF, \
TrainingArgumentsCL, DataArguments, TrainingArgumentsAC
from deep_training.zoo.model_zoo.object_detection.llm_model import PetlArguments, LoraConfig, PromptArguments
from fastdatasets.record import load_dataset as Loader, RECORD, WriterObject, gfile
from transformers import PreTrainedTokenizer, HfArgumentParser, PretrainedConfig, Wav2Vec2Processor, requires_backends
from config import *
from module_setup import module_setup
module_setup()
def preprocess(text):
return text
def postprocess(text):
return text
class NN_DataHelper(DataHelper):
index = 1
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __init__(self, *args, **kwargs):
super(NN_DataHelper, self).__init__(*args, **kwargs)
def on_get_labels(self, files: List[str]):
with open(files[0], mode='r', encoding='utf-8') as f:
label2id = json.loads(f.read())
assert isinstance(label2id,dict)
id2label = {i: label for label,i in label2id.items()}
return label2id, id2label
def load_config(self,
config_name=None,
config_class_name=None,
model_name_or_path=None,
task_specific_params=None,
with_labels=True,
with_task_params=True,
return_dict=False,
with_print_labels=True,
config_kwargs=None):
tokenizer = None
if config_kwargs is None:
config_kwargs = {}
model_args: ModelArguments = self.model_args
training_args = self.training_args
data_args: DataArguments = self.data_args
if data_args is not None:
self.max_seq_length_dict['train'] = data_args.train_max_seq_length
self.max_seq_length_dict['eval'] = data_args.eval_max_seq_length
self.max_seq_length_dict['val'] = data_args.eval_max_seq_length
self.max_seq_length_dict['test'] = data_args.test_max_seq_length
self.max_seq_length_dict['predict'] = data_args.test_max_seq_length
if with_task_params:
task_specific_params = task_specific_params or {}
task_params = self.on_task_specific_params()
if task_params is not None:
task_specific_params.update(task_params)
if training_args is not None:
task_specific_params['learning_rate'] = training_args.learning_rate
task_specific_params[
'learning_rate_for_task'] = training_args.learning_rate_for_task or training_args.learning_rate
kwargs_args = {
"return_dict": return_dict,
"task_specific_params": task_specific_params,
}
kwargs_args.update(config_kwargs)
if with_labels and self.label2id is not None:
kwargs_args['label2id'] = self.label2id
kwargs_args['id2label'] = self.id2label
kwargs_args['num_labels'] = len(self.label2id) if self.label2id is not None else None
config = load_configure(config_name=config_name or model_args.config_name,
class_name=config_class_name,
model_name_or_path=model_name_or_path or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
model_revision=model_args.model_revision,
use_auth_token=model_args.use_auth_token,
**kwargs_args
)
self.config = config
if with_labels and self.label2id is not None and hasattr(config, 'num_labels'):
if with_print_labels:
print('==' * 30, 'num_labels = ', config.num_labels)
print(self.label2id)
print(self.id2label)
if with_labels:
return tokenizer, config, self.label2id, self.id2label
return tokenizer, config
def load_tokenizer_and_config(self, *args, **kwargs):
ret = self.load_config(*args, **kwargs)
self._preprocess_tokenizer_config()
self.load_feature_extractor()
self.load_processer()
return ret
def _preprocess_tokenizer_config(self):
pass
def on_data_ready(self):
self.index = -1
# 切分词
def on_data_process(self, data: Any, mode: str):
self.index += 1
# config = self.config
# max_seq_length = self.max_seq_length_dict[mode]
# data_args = self.data_args
path, labels = data
d = {
"path": np.asarray(bytes(path, encoding="utf-8")),
"labels": np.asarray(bytes(json.dumps(labels,ensure_ascii=False), encoding="utf-8"))
}
if not d:
return None
if self.index < 3:
print(d)
return d
def _get_paragraph(self, lines):
D = []
for line_id, line in enumerate(lines):
jd = json.loads(line)
if not jd:
continue
D.append((jd["path"], jd["labels"]))
return D
# 读取文件
def on_get_corpus(self, files: List, mode: str):
D = []
files = sum([glob.glob(file) for file in files], [])
for file in files:
with open(file, mode='r', encoding='utf-8', newline='\n') as f:
lines = f.readlines()
D.extend(self._get_paragraph(lines))
return D
def collate_fn(self, batch):
batch = copy.copy(batch)
images,annotations = [],[]
for feature in batch:
path = str(feature["path"], encoding="utf-8") if isinstance(feature["path"],bytes) else feature["path"]
annotation = str(feature["labels"], encoding="utf-8") if isinstance(feature["labels"], bytes) else feature["labels"]
images.append(Image.open(path).convert("RGB"))
annotations.append(json.loads(annotation))
inputs = self.processor(images=images, annotations=annotations, return_tensors="pt")
return BatchFeatureDetr(inputs.data)
def make_dataset_all(self):
data_args = self.data_args
# schema for arrow parquet
schema = {
"path": "binary",
"labels": "binary",
}
# 缓存数据集
if data_args.do_train:
self.make_dataset_with_args(data_args.train_file, mixed_data=False, shuffle=True, mode='train',
schema=schema)
if data_args.do_eval:
self.make_dataset_with_args(data_args.eval_file, mode='eval', schema=schema)
if data_args.do_test:
self.make_dataset_with_args(data_args.test_file, mode='test', schema=schema)
# 记录缓存文件
with open(os.path.join(data_args.output_dir, 'intermediate_file_index.json'), mode='w',
encoding='utf-8') as f:
f.write(json.dumps({
"train_files": self.train_files,
"eval_files": self.eval_files,
"test_files": self.test_files,
}, ensure_ascii=False))
@cache
def load_dataset_files(self):
data_args = self.data_args
if not data_args.convert_file:
return {
"train_files": self.train_files,
"eval_files": self.eval_files,
"test_files": self.test_files,
}
filename = os.path.join(data_args.output_dir, 'intermediate_file_index.json')
assert os.path.exists(filename), 'make you dataset firstly'
with open(filename, mode='r', encoding='utf-8') as f:
return json.loads(f.read())
if __name__ == '__main__':
if global_args["trainer_backend"] == "hf":
parser = HfArgumentParser((ModelArguments, TrainingArgumentsHF, DataArguments, PetlArguments, PromptArguments),
conflict_handler='resolve')
model_args, training_args, data_args, lora_args, prompt_args = parser.parse_dict(config_args,
allow_extra_keys=True, )
elif global_args["trainer_backend"] == "pl":
parser = HfArgumentParser((ModelArguments, TrainingArguments, DataArguments, PetlArguments, PromptArguments))
model_args, training_args, data_args, _, _ = parser.parse_dict(config_args)
elif global_args["trainer_backend"] == "cl":
parser = HfArgumentParser((ModelArguments, TrainingArgumentsCL, DataArguments, PetlArguments, PromptArguments),
conflict_handler='resolve')
model_args, training_args, data_args, lora_args, prompt_args = parser.parse_dict(config_args,
allow_extra_keys=True, )
else:
parser = HfArgumentParser((ModelArguments, TrainingArgumentsAC, DataArguments, PetlArguments, PromptArguments),
conflict_handler='resolve')
model_args, training_args, data_args, lora_args, prompt_args = parser.parse_dict(config_args,
allow_extra_keys=True, )
dataHelper = NN_DataHelper(model_args, training_args, data_args)
tokenizer, config, _, _ = dataHelper.load_tokenizer_and_config(config_kwargs={"torch_dtype": torch.float16})
# 缓存数据集
print(f'to make dataset is overwrite_cache {data_args.overwrite_cache}')
dataHelper.make_dataset_all()
print('make dataset complete!')
print('check data !')
dataset = dataHelper.load_sequential_sampler(dataHelper.load_dataset_files()["train_files"],
with_load_memory=data_args.data_backend == 'record',
batch_size=1,
collate_fn=dataHelper.collate_fn)
print('total', len(dataset))
for i, d in enumerate(dataset):
print(d)
if i > 3:
break