-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathec-fp.sml
executable file
·158 lines (119 loc) · 3.97 KB
/
ec-fp.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
structure FieldFp
:>
EC_FIELD
where type index = IntInf.int
where type elem = IntInf.int
=
struct
open IntInf
type index = IntInf.int
type elem = IntInf.int
fun validIndex p =
p > 1
andalso
Arith.isprime p
fun validElem (p, x) =
x >= 0 andalso x < p
fun size p = p
val eq : elem * elem -> bool = op =
fun zero _ = 0 : elem
fun one _ = 1 : elem
fun plus (p, x, y) = (x + y) mod p
fun minus (p, x, y) = (x - y) mod p
fun negate (p, x) = p - x
fun times (p, x, y) = (x * y) mod p
fun inverse (p, x) = Arith.invmod (x, p)
fun elemToBytes (p, x) = ConvertIntInf.toFixedBytesB (Int.+ (Int.div (IntInf.log2 p, 8), 1), x)
val elemFromBytes = ConvertIntInf.fromBytesB
fun elemToInt x = x
end
structure EllipticCurveFp
:>
ELLIPTIC_CURVE
where type Field.index = IntInf.int
where type Field.elem = IntInf.int
=
struct
open IntInf
structure Field = FieldFp
fun inv (p, x) = Arith.invmod (x, p)
type curve = {index : Field.index, a : Field.elem, b : Field.elem}
type point = (Field.elem * Field.elem) option
fun validCurve {index=p, a, b} =
Field.validIndex p
andalso
a >= 0 andalso a < p
andalso
b > 0 andalso b < p
andalso
(((a * a) mod p * a * 4) mod p + (b * b * 27) mod p) mod p <> 0
fun validPoint ({index=p, a, b}, pt) =
(case pt of
NONE => true
| SOME (x, y) =>
x > 0 andalso x < p
andalso
y > 0 andalso y < p
andalso
(((x * x) mod p * x) mod p - (y * y) mod p + (a * x) mod p + b) mod p = 0)
val infinity : point = NONE
fun double (curve as {index=p, a, b}, pt) =
(case pt of
NONE => NONE
| SOME (x, y) =>
let
val m = ((3 * x * x + a) mod p * inv (p, 2 * y)) mod p
val x' = ((m * m) mod p - 2 * x) mod p
val y' = (m * (x - x') - y) mod p
in
SOME (x', y')
end)
fun plus (curve as {index=p, a, b}, pt1, pt2) =
(case pt1 of
NONE => pt2
| SOME (x1, y1) =>
(case pt2 of
NONE => pt1
| SOME (x2, y2) =>
if x1 = x2 then
if y1 = y2 then
double (curve, pt1)
else
NONE
else
let
val m = ((y2 - y1) * inv (p, (x2 - x1) mod p)) mod p
val x3 = ((m * m) mod p - x1 - x2) mod p
val y3 = (m * (x1 - x3) - y1) mod p
in
SOME (x3, y3)
end))
fun negate ({index=p, ...}:curve, pt) =
(case pt of
NONE => NONE
| SOME (x, y) => SOME (x, p-y))
fun eq (pt1, pt2) =
(case (pt1, pt2) of
(NONE, NONE) => true
| (NONE, SOME _) => false
| (SOME _, NONE) => false
| (SOME (x1, y1), SOME (x2, y2)) =>
Field.eq (x1, x2) andalso Field.eq (y1, y2))
fun parity (_, pt) =
(case pt of
NONE =>
raise Domain
| SOME (_, y) =>
andb (y, 1) = 1)
fun recoverPoint ({index=p, a, b}, x, odd) =
let
val y = Arith.sqrtmod ((((x * x) mod p * x) mod p + (a * x) mod p + b) mod p, p)
val isodd = andb (y, 1) = 1
in
if odd = isodd then
SOME (SOME (x, y))
else
SOME (SOME (x, p-y))
end
handle Arith.NotSquare => NONE
end