-
Notifications
You must be signed in to change notification settings - Fork 69
/
nlc_data.py
228 lines (194 loc) · 8.43 KB
/
nlc_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2016 Stanford University
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import gzip
import os
import re
import tarfile
from six.moves import urllib
from tensorflow.python.platform import gfile
# Special vocabulary symbols - we always put them at the start.
_PAD = b"<pad>"
_SOS = b"<sos>"
_EOS = b"<eos>"
_UNK = b"<unk>"
_START_VOCAB = [_PAD, _SOS, _EOS, _UNK]
PAD_ID = 0
SOS_ID = 1
EOS_ID = 2
UNK_ID = 3
# Regular expressions used to tokenize.
_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
_NLC_TRAIN_URL = "http://neuron.stanford.edu/nlc/data/nlc-train.tar"
_NLC_DEV_URL = "http://neuron.stanford.edu/nlc/data/nlc-valid.tar"
def maybe_download(directory, filename, url):
"""Download filename from url unless it's already in directory."""
if not os.path.exists(directory):
print("Creating directory %s" % directory)
os.mkdir(directory)
filepath = os.path.join(directory, filename)
if not os.path.exists(filepath):
print("Downloading %s to %s" % (url, filepath))
filepath, _ = urllib.request.urlretrieve(url, filepath)
statinfo = os.stat(filepath)
print("Succesfully downloaded", filename, statinfo.st_size, "bytes")
return filepath
def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
print("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_nlc_train_set(directory):
"""Download the NLC training corpus to directory unless it's there."""
train_path = os.path.join(directory, "train")
print (train_path + ".x.txt")
print (train_path + ".y.txt")
if not (gfile.Exists(train_path +".x.txt") and gfile.Exists(train_path +".y.txt")):
corpus_file = maybe_download(directory, "nlc-train.tar",
_NLC_TRAIN_URL)
print("Extracting tar file %s" % corpus_file)
with tarfile.open(corpus_file, "r") as corpus_tar:
corpus_tar.extractall(directory)
return train_path
def get_nlc_dev_set(directory):
"""Download the NLC training corpus to directory unless it's there."""
dev_name = "valid"
dev_path = os.path.join(directory, dev_name)
if not (gfile.Exists(dev_path + ".y.txt") and gfile.Exists(dev_path + ".x.txt")):
dev_file = maybe_download(directory, "nlc-valid.tar", _NLC_DEV_URL)
print("Extracting tgz file %s" % dev_file)
with tarfile.open(dev_file, "r") as dev_tar:
y_dev_file = dev_tar.getmember(dev_name + ".y.txt")
x_dev_file = dev_tar.getmember(dev_name + ".x.txt")
y_dev_file.name = dev_name + ".y.txt" # Extract without "dev/" prefix.
x_dev_file.name = dev_name + ".x.txt"
dev_tar.extract(y_dev_file, directory)
dev_tar.extract(x_dev_file, directory)
return dev_path
def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
for space_separated_fragment in sentence.strip().split():
words.extend(re.split(_WORD_SPLIT, space_separated_fragment))
return [w for w in words if w]
def char_tokenizer(sentence):
return list(sentence.strip())
def bpe_tokenizer(sentence):
tokens = sentence.strip().split()
tokens = [w + "</w>" if not w.endswith("@@") else w for w in tokens]
tokens = [w.replace("@@", "") for w in tokens]
return tokens
def remove_nonascii(text):
return re.sub(r'[^\x00-\x7F]', '', text)
def create_vocabulary(vocabulary_path, data_paths, max_vocabulary_size,
tokenizer=None, normalize_digits=False):
if not gfile.Exists(vocabulary_path):
print("Creating vocabulary %s from data %s" % (vocabulary_path, str(data_paths)))
vocab = {}
for path in data_paths:
with gfile.GFile(path, mode="rb") as f:
counter = 0
for line in f:
counter += 1
if counter % 100000 == 0:
print(" processing line %d" % counter)
# Remove non-ASCII characters
line = remove_nonascii(line)
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
for w in tokens:
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
print("Vocabulary size: %d" % len(vocab_list))
if len(vocab_list) > max_vocabulary_size:
vocab_list = vocab_list[:max_vocabulary_size]
with gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
for w in vocab_list:
vocab_file.write(w + b"\n")
def initialize_vocabulary(vocabulary_path, bpe=False):
if gfile.Exists(vocabulary_path):
rev_vocab = []
with gfile.GFile(vocabulary_path, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip('\n') for line in rev_vocab]
# Call ''.join below since BPE outputs split pairs with spaces
if bpe:
vocab = dict([(''.join(x.split(' ')), y) for (y, x) in enumerate(rev_vocab)])
else:
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=False):
if tokenizer:
words = tokenizer(sentence)
else:
words = basic_tokenizer(sentence)
if not normalize_digits:
return [vocabulary.get(w, UNK_ID) for w in words]
# Normalize digits by 0 before looking words up in the vocabulary.
return [vocabulary.get(re.sub(_DIGIT_RE, b"0", w), UNK_ID) for w in words]
def data_to_token_ids(data_path, target_path, vocabulary_path,
tokenizer=None, normalize_digits=False):
if not gfile.Exists(target_path):
print("Tokenizing data in %s" % data_path)
vocab, _ = initialize_vocabulary(vocabulary_path, bpe=(tokenizer==bpe_tokenizer))
with gfile.GFile(data_path, mode="rb") as data_file:
with gfile.GFile(target_path, mode="w") as tokens_file:
counter = 0
for line in data_file:
counter += 1
if counter % 100000 == 0:
print(" tokenizing line %d" % counter)
line = remove_nonascii(line)
token_ids = sentence_to_token_ids(line, vocab, tokenizer,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
def prepare_nlc_data(data_dir, max_vocabulary_size, tokenizer=char_tokenizer, other_dev_path=None):
# Get nlc data to the specified directory.
train_path = get_nlc_train_set(data_dir)
if other_dev_path is None:
dev_path = get_nlc_dev_set(data_dir)
else:
dev_path = get_nlc_dev_set(other_dev_path)
# FIXME(zxie) Currently using vocabulary generated by BPE code
## Create vocabularies of the appropriate sizes.
vocab_path = os.path.join(data_dir, "vocab.dat")
if tokenizer != bpe_tokenizer:
create_vocabulary(vocab_path, [train_path + ".y.txt", train_path + ".x.txt"],
max_vocabulary_size, tokenizer)
# Create token ids for the training data.
y_train_ids_path = train_path + ".ids.y"
x_train_ids_path = train_path + ".ids.x"
data_to_token_ids(train_path + ".y.txt", y_train_ids_path, vocab_path, tokenizer)
data_to_token_ids(train_path + ".x.txt", x_train_ids_path, vocab_path, tokenizer)
# Create token ids for the development data.
y_dev_ids_path = dev_path + ".ids.y"
x_dev_ids_path = dev_path + ".ids.x"
data_to_token_ids(dev_path + ".y.txt", y_dev_ids_path, vocab_path, tokenizer)
data_to_token_ids(dev_path + ".x.txt", x_dev_ids_path, vocab_path, tokenizer)
return (x_train_ids_path, y_train_ids_path,
x_dev_ids_path, y_dev_ids_path, vocab_path)