-
Notifications
You must be signed in to change notification settings - Fork 727
/
example.slurm
74 lines (57 loc) · 2.13 KB
/
example.slurm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/bin/bash
# this is a 2 node slurm job example, you will most likely need to adapt --cpus-per-task and --partition
#SBATCH --job-name=example-job
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=96
#SBATCH --gres=gpu:8
#SBATCH --time=0:10:00
#SBATCH --exclusive
#SBATCH --partition=xyz-cluster
#SBATCH --output=%x-%j.out
set -x -e
# CHANGE HERE THE CONDA EVN AND ANY STARTUP SCRIPTS
source /path/to/start-xxx-user # if you have something to preload before the job
conda activate stas-xxx # if you have conda env to activate
echo "START TIME: $(date)"
# CHANGE TO CUMMULATIVELY LOG OUTPUTS
LOG_PATH="main_log.txt"
GPUS_PER_NODE=8
NNODES=$SLURM_NNODES
# so processes know who to talk to
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
# OTHER LAUNCHERS CAN BE USED HERE
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--role `hostname -s`: \
--tee 3 \
"
# CHANGE HERE THE SCRIPT AND WHATEVER ARGS IT NEEDS
CMD="\
torch-distributed-gpu-test.py \
"
echo $CMD
# hide duplicated errors using this hack - will be properly fixed in pt-1.12
# export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json
# force crashing on nccl issues like hanging broadcast
export NCCL_ASYNC_ERROR_HANDLING=1
# export NCCL_DEBUG=INFO
# export NCCL_DEBUG_SUBSYS=COLL
# export NCCL_SOCKET_NTHREADS=1
# export NCCL_NSOCKS_PERTHREAD=1
# export CUDA_LAUNCH_BLOCKING=1
# srun error handling:
# --wait=60: wait 60 sec after the first task terminates before terminating all remaining tasks
# --kill-on-bad-exit=1: terminate a step if any task exits with a non-zero exit code
SRUN_ARGS=" \
--wait=60 \
--kill-on-bad-exit=1 \
"
# py-spy top -s -i -n -- $LAUNCHER --node_rank $SLURM_PROCID --role $SLURMD_NODENAME: $CMD
clear; srun $SRUN_ARGS --jobid $SLURM_JOB_ID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID --role \$SLURMD_NODENAME: $CMD" 2>&1 | tee -a $LOG_PATH
echo "END TIME: $(date)"