-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcurate_util_usage.py
executable file
·41 lines (33 loc) · 1.53 KB
/
curate_util_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import sys
import urllib
import os
import pandas as pd
import curate_util as CU
import random
if __name__ == "__main__":
#Simple Version
catalog_dict = CU.grab_data_dict(1998,1999, 'clean_data/')
data_frame = CU.grab_data_frame(catalog_dict)
print data_frame.tail(10)
#Not asking to also return datetime row.
catalog_dict = CU.grab_data_dict(1998,1999, 'clean_data/')
data_frame = CU.grab_data_frame(catalog_dict, convert_datetime=True)
print data_frame.head(10)
#Sample on actually converting numbers to float and working with them.
catalog_dict = CU.grab_data_dict(1999,1999, 'clean_data/')
data_frame = CU.grab_data_frame(catalog_dict)
data_frame['MAG'].apply(float)
average = sum(data_frame['MAG'])/float(len(data_frame['MAG']))
print "Average Magnitude in 1999: %s" % average
#return 250 rows
catalog_dict = CU.grab_data_dict(1999,1999, 'clean_data/')
data_frame = CU.grab_data_frame(catalog_dict)
rows = random.sample(data_frame.index, 250)
df_250 = data_frame.ix[rows]
df_250.to_csv(os.path.join(os.getcwd(), "250.csv"), index = False)
print df_250
#return magnitude > 3.5 from 1930 to 2013 as available
catalog_dict = CU.grab_data_dict(1932,2013, 'clean_data/')
data_frame = CU.grab_data_frame(catalog_dict, minimum_magnitude=3.5)
sorted_data_frame = data_frame.sort_index(by=['YYYY/MM/DD'], ascending=[True])
sorted_data_frame.to_csv(os.path.join(os.getcwd(), "1932_2013_mag_3.5.csv"), index = False)