generated from statOmics/Rmd-website
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pda_robustSummarisation_peptideModels.Rmd
675 lines (493 loc) · 20.8 KB
/
pda_robustSummarisation_peptideModels.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
---
title: "Statistical Methods for Quantitative MS-based Proteomics: Peptide-level Models for Summarization and Inference"
author: "Lieven Clement"
date: "[statOmics](https://statomics.github.io), Ghent University"
output:
html_document:
code_download: true
theme: flatly
toc: true
toc_float: true
highlight: tango
number_sections: true
pdf_document:
toc: true
number_sections: true
linkcolor: blue
urlcolor: blue
citecolor: blue
bibliography: msqrob2.bib
---
<a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a>
This is part of the online course [Proteomics Data Analysis (PDA)](https://statomics.github.io/PDA/)
<iframe width="560" height="315"
src="https://www.youtube.com/embed/-vp7EBaur7s"
frameborder="0"
style="display: block; margin: auto;"
allow="autoplay; encrypted-media" allowfullscreen></iframe>
```{r, warning=FALSE, message=FALSE}
library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
library(gridExtra)
```
# Subset of CPTAC study: A vs B comparison in lab 3
## LFQ
<details><summary> Click to see background and code </summary><p>
1. Import data
```{r}
proteinsFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/cptacAvsB_lab3/proteinGroups.txt"
ecols <- grep("LFQ\\.intensity\\.", names(read.delim(proteinsFile)))
peLFQ <- readQFeatures(
table = proteinsFile, fnames = 1, ecol = ecols,
name = "proteinRaw", sep = "\t"
)
cond <- which(
strsplit(colnames(peLFQ)[[1]][1], split = "")[[1]] == "A") # find where condition is stored
colData(peLFQ)$condition <- substr(colnames(peLFQ), cond, cond) %>%
unlist %>%
as.factor
```
2. Preprocessing
```{r}
rowData(peLFQ[["proteinRaw"]])$nNonZero <- rowSums(assay(peLFQ[["proteinRaw"]]) > 0)
peLFQ <- zeroIsNA(peLFQ, "proteinRaw") # convert 0 to NA
peLFQ <- logTransform(peLFQ, base = 2, i = "proteinRaw", name = "proteinLog")
peLFQ <- filterFeatures(peLFQ,~ Reverse != "+")
peLFQ <- filterFeatures(peLFQ,~ Potential.contaminant != "+")
peLFQ <- normalize(peLFQ,
i = "proteinLog",
name = "protein",
method = "center.median")
```
3. Modeling and Inference
```{r}
peLFQ <- msqrob(object = peLFQ, i = "protein", formula = ~condition)
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))
peLFQ <- hypothesisTest(object = peLFQ, i = "protein", contrast = L)
volcanoLFQ <- ggplot(rowData(peLFQ[["protein"]])$conditionB,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0("maxLFQ: TP = ",sum(rowData(peLFQ[["protein"]])$conditionB$adjPval<0.05&grepl(rownames(rowData(peLFQ[["protein"]])$conditionB),pattern ="UPS"),na.rm=TRUE), " FP = ", sum(rowData(peLFQ[["protein"]])$conditionB$adjPval<0.05&!grepl(rownames(rowData(peLFQ[["protein"]])$conditionB),pattern ="UPS"),na.rm=TRUE)))
```
</p></details>
## Median & robust summarization
<details><summary> Click to see background and code </summary><p>
1. Import Data
```{r}
peptidesFile <- "https://raw.githubusercontent.com/statOmics/SGA2020/data/quantification/cptacAvsB_lab3/peptides.txt"
ecols <- grep(
"Intensity\\.",
names(read.delim(peptidesFile))
)
pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")
cond <- which(
strsplit(colnames(pe)[[1]][1], split = "")[[1]] == "A") # find where condition is stored
colData(pe)$condition <- substr(colnames(pe), cond, cond) %>%
unlist %>%
as.factor
```
2. Preprocessing
```{r}
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")
pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "proteinMedian",
fun = matrixStats::colMedians)
pe <- aggregateFeatures(pe,
i = "peptideNorm",
fcol = "Proteins",
na.rm = TRUE,
name = "proteinRobust")
```
3. Modeling and inference
```{r}
pe <- msqrob(object = pe, i = "proteinMedian", formula = ~condition)
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))
pe <- hypothesisTest(object = pe, i = "proteinMedian", contrast = L)
pe <- msqrob(object = pe, i = "proteinRobust", formula = ~condition)
pe <- hypothesisTest(object = pe, i = "proteinRobust", contrast = L)
volcanoMedian <- ggplot(rowData(pe[["proteinMedian"]])$conditionB,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0("Median: TP = ",sum(rowData(pe[["proteinMedian"]])$conditionB$adjPval<0.05&grepl(rownames(rowData(pe[["proteinMedian"]])$conditionB),pattern ="UPS"),na.rm=TRUE), " FP = ", sum(rowData(pe[["proteinMedian"]])$conditionB$adjPval<0.05&!grepl(rownames(rowData(pe[["proteinMedian"]])$conditionB),pattern ="UPS"),na.rm=TRUE)))
volcanoRobust<- ggplot(rowData(pe[["proteinRobust"]])$conditionB,
aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
geom_point(cex = 2.5) +
scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
theme_minimal() +
ggtitle(paste0("Robust: TP = ",sum(rowData(pe[["proteinRobust"]])$conditionB$adjPval<0.05&grepl(rownames(rowData(pe[["proteinRobust"]])$conditionB),pattern ="UPS"),na.rm=TRUE), " FP = ", sum(rowData(pe[["proteinRobust"]])$conditionB$adjPval<0.05&!grepl(rownames(rowData(pe[["proteinRobust"]])$conditionB),pattern ="UPS"),na.rm=TRUE)))
```
```{r}
ylims <- c(0,
ceiling(max(c(-log10(rowData(peLFQ[["protein"]])$conditionB$pval),
-log10(rowData(pe[["proteinMedian"]])$conditionB$pval),
-log10(rowData(pe[["proteinRobust"]])$conditionB$pval)),
na.rm=TRUE))
)
xlims <- max(abs(c(rowData(peLFQ[["protein"]])$conditionB$logFC,
rowData(pe[["proteinMedian"]])$conditionB$logFC,
rowData(pe[["proteinRobust"]])$conditionB$logFC)),
na.rm=TRUE) * c(-1,1)
```
```{r}
compBoxPlot <- rbind(rowData(peLFQ[["protein"]])$conditionB %>% mutate(method="maxLFQ") %>% rownames_to_column(var="protein"),
rowData(pe[["proteinMedian"]])$conditionB %>% mutate(method="median")%>% rownames_to_column(var="protein"),
rowData(pe[["proteinRobust"]])$conditionB%>% mutate(method="robust")%>% rownames_to_column(var="protein")) %>%
mutate(ups= grepl(protein,pattern="UPS")) %>%
ggplot(aes(x = method, y = logFC, fill = ups)) +
geom_boxplot() +
geom_hline(yintercept = log2(0.74 / .25), color = "#00BFC4") +
geom_hline(yintercept = 0, color = "#F8766D")
```
</p></details>
## Comparison summarization methods
```{r}
grid.arrange(volcanoLFQ + xlim(xlims) + ylim(ylims),
volcanoMedian + xlim(xlims) + ylim(ylims),
volcanoRobust + xlim(xlims) + ylim(ylims),
ncol=1)
```
- Robust summarization: highest power and still good FDR control: $FDP = \frac{1}{20} = 0.05$.
```{r}
compBoxPlot
```
- Median: biased logFC estimates for spike-in proteins
- maxLFQ: more variable logFC estiamtes for spike-in proteins
# Full CPTAC study
## Read data
<details><summary> Click to see background and code </summary><p>
1. We use a peptides.txt file from MS-data quantified with maxquant that
contains MS1 intensities summarized at the peptide level.
```{r}
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/fullCptacDatasSetNotForTutorial/peptides.txt"
```
2. Maxquant stores the intensity data for the different samples in columnns that start with Intensity. We can retreive the column names with the intensity data with the code below:
```{r}
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))
```
3. Read the data and store it in QFeatures object
```{r}
pe <- readQFeatures(
table = peptidesFile,
fnames = 1,
ecol = ecols,
name = "peptideRaw", sep="\t")
```
</p></details>
## Design
<details><summary> Click to see background and code </summary><p>
```{r}
pe %>% colnames
```
- Note, that the sample names include the spike-in condition.
- They also end on a number.
- 1-3 is from lab 1,
- 4-6 from lab 2 and
- 7-9 from lab 3.
- We update the colData with information on the design
```{r}
colData(pe)$lab <- rep(rep(paste0("lab",1:3),each=3),5) %>% as.factor
colData(pe)$condition <- pe[["peptideRaw"]] %>% colnames %>% substr(12,12) %>% as.factor
colData(pe)$spikeConcentration <- rep(c(A = 0.25, B = 0.74, C = 2.22, D = 6.67, E = 20),each = 9)
```
- We explore the colData
```{r}
colData(pe)
```
</p></details>
## Preprocessing
### Log-transform
<details><summary> Click to see code to log-transfrom the data </summary><p>
- We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.
```{r}
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
```
- Peptides with zero intensities are missing peptides and should be represent
with a `NA` value rather than `0`.
```{r}
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```
- Logtransform data with base 2
```{r}
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")
```
</p></details>
### Filtering
<details><summary> Click to see code to filter the data </summary><p>
1. Handling overlapping protein groups
In our approach a peptide can map to multiple proteins, as long as there is
none of these proteins present in a smaller subgroup.
```{r}
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
```
2. Remove reverse sequences (decoys) and contaminants
We now remove the contaminants, peptides that map to decoy sequences, and proteins
which were only identified by peptides with modifications.
```{r}
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")
```
3. Drop peptides that were only identified in one sample
We keep peptides that were observed at last twice.
```{r}
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
```
We keep `r nrow(pe[["peptideLog"]])` peptides upon filtering.
</p></details>
## Normalization
<details><summary> Click to see R-code to normalize the data </summary><p>
```{r}
pe <- normalize(pe,
i = "peptideLog",
name = "peptideNorm",
method = "center.median")
```
</p></details>
---
# Peptide-level models
## Summarization
<details><summary> Click to see code to make plot </summary><p>
```{r plot = FALSE}
prot <- "P01031ups|CO5_HUMAN_UPS"
data <- pe[["peptideNorm"]][
rowData(pe[["peptideNorm"]])$Proteins == prot,
colData(pe)$lab=="lab3"] %>%
assay %>%
as.data.frame %>%
rownames_to_column(var = "peptide") %>%
gather(sample, intensity, -peptide) %>%
mutate(condition = colData(pe)[sample,"condition"]) %>%
na.exclude
sumPlot <- data %>%
ggplot(aes(x = peptide, y = intensity, color = condition, group = sample, label = condition), show.legend = FALSE) +
geom_text(show.legend = FALSE) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
xlab("Peptide") +
ylab("Intensity (log2)") +
ggtitle(paste0("protein: ",prot))
```
</p></details>
Here, we will focus on the summarization of the intensities for protein `r prot`.
```{r}
sumPlot +
geom_line(linetype="dashed",alpha=.4)
```
### Median summarization
We first evaluate median summarization for protein `r prot`.
<details><summary> Click to see code to make plot </summary><p>
```{r}
dataHlp <- pe[["peptideNorm"]][
rowData(pe[["peptideNorm"]])$Proteins == prot,
colData(pe)$lab=="lab3"] %>% assay
sumMedian <- data.frame(
intensity= dataHlp
%>% colMedians(na.rm=TRUE)
,
condition= colnames(dataHlp) %>% substr(12,12) %>% as.factor )
sumMedianPlot <- sumPlot +
geom_hline(
data = sumMedian,
mapping = aes(yintercept=intensity,color=condition)) +
ggtitle("Median summarization")
```
</p></details>
```{r}
sumMedianPlot
```
- The sample medians are not a good estimate for the protein expression value.
- Indeed, they do not account for differences in peptide effects
- Peptides that ionize poorly are also picked up in samples with high spike-in concencentration and not in samples with low spike-in concentration
- This introduces a bias.
### Mean summarization
$$
y_{ip} = \beta_i^\text{sample} + \epsilon_{ip}
$$
<details><summary> Click to see code to make plot </summary><p>
```{r}
sumMeanMod <- lm(intensity ~ -1 + sample,data)
sumMean <- data.frame(
intensity=sumMeanMod$coef[grep("sample",names(sumMeanMod$coef))],
condition= names(sumMeanMod$coef)[grep("sample",names(sumMeanMod$coef))] %>% substr(18,18) %>% as.factor )
sumMeanPlot <- sumPlot + geom_hline(
data = sumMean,
mapping = aes(yintercept=intensity,color=condition)) +
ggtitle("Mean summarization")
```
</p></details>
```{r}
grid.arrange(sumMedianPlot, sumMeanPlot, ncol=2)
```
### Model based summarization
We can use a linear peptide-level model to estimate the protein expression value while correcting for the peptide effect, i.e.
$$
y_{ip} = \beta_i^\text{sample}+\beta^{peptide}_{p} + \epsilon_{ip}
$$
<details><summary> Click to see code to make plot </summary><p>
```{r}
sumMeanPepMod <- lm(intensity ~ -1 + sample + peptide,data)
sumMeanPep <- data.frame(
intensity=sumMeanPepMod$coef[grep("sample",names(sumMeanPepMod$coef))] + mean(data$intensity) - mean(sumMeanPepMod$coef[grep("sample",names(sumMeanPepMod$coef))]),
condition= names(sumMeanPepMod$coef)[grep("sample",names(sumMeanPepMod$coef))] %>% substr(18,18) %>% as.factor )
fitLmPlot <- sumPlot + geom_line(
data = data %>% mutate(fit=sumMeanPepMod$fitted.values),
mapping = aes(x=peptide, y=fit,color=condition, group=sample)) +
ggtitle("fit: ~ sample + peptide")
sumLmPlot <- sumPlot + geom_hline(
data = sumMeanPep,
mapping = aes(yintercept=intensity,color=condition)) +
ggtitle("Summarization: sample effect")
```
</p></details>
```{r}
grid.arrange(sumMedianPlot, sumMeanPlot, sumLmPlot, nrow=1)
```
- By correcting for the peptide species the protein expression values are much better separated an better reflect differences in abundance induced by the spike-in condition.
- Indeed, it shows that median and mean summarization that do not account for the peptide effect indeed overestimate the protein expression value in the small spike-in conditions and underestimate that in the large spike-in conditions.
- Still there seem to be some issues with samples that for which the expression values are not well separated according to the spike-in condition.
A residual analysis clearly indicates potential issues:
<details><summary> Click to see code to make plot </summary><p>
```{r}
resPlot <- data %>%
mutate(res=sumMeanPepMod$residuals) %>%
ggplot(aes(x = peptide, y = res, color = condition, label = condition), show.legend = FALSE) +
geom_point(shape=21) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
xlab("Peptide") +
ylab("residual") +
ggtitle("residuals: ~ sample + peptide")
```
</p></details>
```{r}
grid.arrange(fitLmPlot, resPlot, nrow = 1)
grid.arrange(fitLmPlot, sumLmPlot, nrow = 1)
```
- The residual plot shows some large outliers for peptide KIEEIAAK.
- Indeed, in the original plot the intensities for this peptide do not seem to line up very well with the concentration.
- This induces a bias in the summarization for some of the samples (e.g. for D and E)
### Robust summarization using a peptide-level linear model
$$
y_{ip} = \beta_i^\text{sample}+\beta^{peptide}_{p} + \epsilon_{ip}
$$
- Ordinary least squares: estimate $\beta$ that minimizes
$$
\text{OLS}: \sum\limits_{i,p} \epsilon_{ip}^2 = \sum\limits_{i,p}(y_{ip}-\beta_i^\text{sample}-\beta_p^\text{peptide})^2
$$
We replace OLS by M-estimation with loss function
$$
\sum\limits_{i,p} w_{ip}\epsilon_{ip}^2 = \sum\limits_{i,p}w_{ip}(y_{ip}-\beta_i^\text{sample}-\beta_p^\text{peptide})^2
$$
- Iteratively fit model with observation weights $w_{ip}$ until convergence
- The weights are calculated based on standardized residuals
<details><summary> Click to see code to make plot </summary><p>
```{r}
sumMeanPepRobMod <- MASS::rlm(intensity ~ -1 + sample + peptide,data)
resRobPlot <- data %>%
mutate(res = sumMeanPepRobMod$residuals,
w = sumMeanPepRobMod$w) %>%
ggplot(aes(x = peptide, y = res, color = condition, label = condition,size=w), show.legend = FALSE) +
geom_point(shape=21,size=.2) +
geom_point(shape=21) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
xlab("Peptide") +
ylab("residual") +
ylim(c(-1,1)*max(abs(sumMeanPepRobMod$residuals)))
weightPlot <- qplot(
seq(-5,5,.01),
MASS::psi.huber(seq(-5,5,.01)),
geom="path") +
xlab("standardized residual") +
ylab("weight")
```
</p></details>
```{r}
grid.arrange(weightPlot,resRobPlot,nrow=1)
```
- We clearly see that the weights in the M-estimation procedure will down-weight errors associated with outliers for peptide KIEEIAAK.
<details><summary> Click to see code to make plot </summary><p>
```{r}
sumMeanPepRob <- data.frame(
intensity=sumMeanPepRobMod$coef[grep("sample",names(sumMeanPepRobMod$coef))] + mean(data$intensity) - mean(sumMeanPepRobMod$coef[grep("sample",names(sumMeanPepRobMod$coef))]),
condition= names(sumMeanPepRobMod$coef)[grep("sample",names(sumMeanPepRobMod$coef))] %>% substr(18,18) %>% as.factor )
sumRlmPlot <- sumPlot + geom_hline(
data=sumMeanPepRob,
mapping=aes(yintercept=intensity,color=condition)) +
ggtitle("Robust")
```
</p></details>
```{r}
grid.arrange(sumLmPlot + ggtitle("OLS"), sumRlmPlot, nrow = 1)
```
- Robust regresion results in a better separation between the protein expression values for the different samples according to their spike-in concentration.
### Comparison summarization methods
- maxLFQ
```{r echo=FALSE}
knitr::include_graphics("./figures/maxLFQ_principle.png")
```
- MS-stats also uses a robust peptide level model to perform the summarization, however, they typically first impute missing values
- Proteus high-flyer method: mean of three peptides with highest intensity
```{r echo=FALSE}
knitr::include_graphics("./figures/msqrobsum_sum_novel.png")
```
- [@sticker2020]
- doi: https://doi.org/10.1074/mcp.RA119.001624
- [pdf](https://www.mcponline.org/action/showPdf?pii=S1535-9476%2820%2934982-3)
## Estimation of differential abundance using peptide level model
- Instead of summarising the data we can also directly model the data at the peptide-level.
- But, we will have to address the pseudo-replication.
$$
y_{iclp}= \beta_0 + \beta_c^\text{condition} + \beta_l^\text{lab} + \beta_p^\text{peptide} + u_s^\text{sample} + \epsilon_{iclp}
$$
- protein-level
- $\beta^\text{condition}_c$: spike-in condition $c=b, \ldots, e$
- $\beta^\text{lab}_l$: lab effect $l=l_2\ldots l_3$
- $u_{r}^\text{run}\sim N\left(0,\sigma^2_\text{run}\right) \rightarrow$ random effect addresses pseudo-replication
- peptide-level
- $\beta_{p}^\text{peptide}$: peptide effect
- $\epsilon_{rp} \sim N\left(0,\sigma^2_{\epsilon}\right)$ within sample (run) error
- DA estimates:
$$
\log_2FC_{B-A}=\beta^\text{condition}_B
$$
$$
\log_2FC_{C-B}=\beta^\text{condition}_C - \beta^\text{condition}_B
$$
- Mixed peptide-level models are implemented in msqrob2
- It has the advantages that
1. it correctly addresses the difference levels of variability in the data
2. it avoids summarization and therefore also accounts for the difference in the number of peptides that are observed in each sample
3. more powerful analysis
- It has the disadvantage that
1. protein summaries are no longer available for plotting
2. it is difficult to correctly specify the degrees of freedom for the test-statistic leading to inference that is too liberal in experiments with small sample size
3. sometimes sample level random effect variance are estimated to be zero, then the pseudo-replication is not addressed leading to inference that is too liberal for these specific proteins
4. they are much more difficult to disseminate to users with limited background in statistics
Hence, for this course we opted to use peptide-level models for summarization, but not for directly inferring on the differential expression at the protein-level.
# References