-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathssd_combined.py
981 lines (918 loc) · 52.2 KB
/
ssd_combined.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
# Copyright (c) 2024, Tri Dao, Albert Gu.
"""We want triton==2.1.0 or 2.2.0 for this
"""
from typing import Optional
import math
from packaging import version
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
import triton
import triton.language as tl
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn
import causal_conv1d_cuda
except ImportError:
causal_conv1d_fn, causal_conv1d_cuda = None, None
from mamba_ssm.ops.triton.ssd_bmm import _bmm_chunk_fwd, _bmm_chunk_bwd
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_cumsum_fwd, _chunk_cumsum_bwd
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_fwd, _chunk_state_bwd_db
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_bwd_ddAcs_stable
from mamba_ssm.ops.triton.ssd_chunk_state import chunk_state, chunk_state_ref
from mamba_ssm.ops.triton.ssd_chunk_state import chunk_state_varlen
from mamba_ssm.ops.triton.ssd_state_passing import _state_passing_fwd, _state_passing_bwd
from mamba_ssm.ops.triton.ssd_state_passing import state_passing, state_passing_ref
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_fwd, _chunk_scan_bwd_dz, _chunk_scan_bwd_dstates
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_dC, _chunk_scan_bwd_dcb
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_ddAcs_stable
from mamba_ssm.ops.triton.ssd_chunk_scan import chunk_scan, chunk_scan_ref
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_ddAcs_prev
from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn, _layer_norm_fwd, _layer_norm_bwd
from mamba_ssm.ops.triton.k_activations import _swiglu_fwd, _swiglu_bwd
TRITON_22 = version.parse(triton.__version__) >= version.parse('2.2.0')
def init_to_zero(names):
return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None]
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
],
key=['chunk_size', 'hdim', 'dstate'],
)
@triton.jit
def _chunk_scan_chunk_state_bwd_dx_kernel(
# Pointers to matrices
x_ptr, cb_ptr, dout_ptr, dt_ptr, dA_cumsum_ptr, seq_idx_ptr, D_ptr,
b_ptr, dstates_ptr,
dx_ptr, ddt_ptr, dD_ptr,
# Matrix dimensions
chunk_size, hdim, dstate,
batch, seqlen, nheads_ngroups_ratio,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_cb_batch, stride_cb_chunk, stride_cb_head, stride_cb_csize_m, stride_cb_csize_k,
stride_dout_batch, stride_dout_seqlen, stride_dout_head, stride_dout_hdim,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_seq_idx_batch, stride_seq_idx_seqlen,
stride_D_head,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dstates_batch, stride_dstates_chunk, stride_dstates_head, stride_dstates_hdim, stride_dstates_dstate,
stride_dx_batch, stride_dx_seqlen, stride_dx_head, stride_dx_hdim,
stride_ddt_batch, stride_ddt_chunk, stride_ddt_head, stride_ddt_csize,
stride_dD_batch, stride_dD_chunk, stride_dD_head, stride_dD_csize, stride_dD_hdim,
# Meta-parameters
HAS_D: tl.constexpr,
D_HAS_HDIM: tl.constexpr,
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
IS_TRITON_22: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
cb_ptr += pid_b * stride_cb_batch + pid_c * stride_cb_chunk + (pid_h // nheads_ngroups_ratio) * stride_cb_head
dout_ptr += pid_b * stride_dout_batch + pid_c * chunk_size * stride_dout_seqlen + pid_h * stride_dout_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
ddt_ptr += pid_b * stride_ddt_batch + pid_c * stride_ddt_chunk + pid_h * stride_ddt_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
dstates_ptr += pid_b * stride_dstates_batch + pid_c * stride_dstates_chunk + pid_h * stride_dstates_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
dA_cs_m = tl.load(dA_cumsum_ptr + offs_m * stride_dA_cs_csize, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
if not HAS_SEQ_IDX:
scale = tl.exp(dA_cs_last - dA_cs_m)
else:
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
scale = tl.where(seq_idx_m == seq_idx_last, tl.exp(dA_cs_last - dA_cs_m), 0.0)
# Might be faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
# However, we're getting error with the Triton compiler 2.1.0 for that code path:
# Unexpected mma -> mma layout conversion
# Triton 2.2.0 fixes this
offs_dstate = tl.arange(0, BLOCK_SIZE_DSTATE if IS_TRITON_22 and BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K)
b_ptrs = b_ptr + (offs_m[:, None] * stride_b_seqlen + offs_dstate[None, :] * stride_b_dstate)
dstates_ptrs = dstates_ptr + (offs_n[None, :] * stride_dstates_hdim + offs_dstate[:, None] * stride_dstates_dstate)
if IS_TRITON_22 and BLOCK_SIZE_DSTATE <= 128:
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_dstate[None, :] < dstate), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_dstate[:, None] < dstate) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc = tl.dot(b, dstates) * scale[:, None]
else:
for k in range(0, dstate, BLOCK_SIZE_K):
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_dstate[None, :] < dstate - k), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_dstate[:, None] < dstate - k) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc += tl.dot(b, dstates)
b_ptrs += BLOCK_SIZE_K * stride_b_dstate
dstates_ptrs += BLOCK_SIZE_K * stride_dstates_dstate
acc *= scale[:, None]
# x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
# x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
# dt_ptrs = dt_ptr + offs_m * stride_dt_csize
# dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
# ddt = tl.sum(acc * x, axis=1) * dt_m
# ddt_ptrs = ddt_ptr + offs_m * stride_ddt_csize
# tl.atomic_add(ddt_ptrs, ddt, mask=offs_m < chunk_size)
offs_k = tl.arange(0, BLOCK_SIZE_K)
cb_ptrs = cb_ptr + (offs_m[:, None] * stride_cb_csize_m + offs_k[None, :] * stride_cb_csize_k)
dout_ptrs = dout_ptr + (offs_k[:, None] * stride_dout_seqlen + offs_n[None, :] * stride_dout_hdim)
dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
K_MAX = chunk_size_limit
K_MIN = pid_m * BLOCK_SIZE_M
cb_ptrs += K_MIN * stride_cb_csize_k
dout_ptrs += K_MIN * stride_dout_seqlen
dA_cumsum_ptrs += K_MIN * stride_dA_cs_csize
for k in range(K_MIN, K_MAX, BLOCK_SIZE_K):
k = tl.multiple_of(k, BLOCK_SIZE_K)
# For some reason setting mask to (offs_m[:, None] < chunk_size_limit) is much slower
cb = tl.load(cb_ptrs, mask=(offs_m[:, None] < chunk_size) & (offs_k[None, :] < K_MAX - k), other=0.0)
dout = tl.load(dout_ptrs, mask=(offs_k[:, None] < K_MAX - k) & (offs_n[None, :] < hdim), other=0.0)
dA_cs_k = tl.load(dA_cumsum_ptrs, mask=offs_k < K_MAX - k, other=0.0).to(tl.float32)
cb *= tl.exp(dA_cs_k[None, :] - dA_cs_m[:, None])
# If we don't have the (k + offs_k[None, :] < K_MAX) mask, for indices outside this range,
# we might have dA_cs_m = 0.0 and dA_cs_k very negative, and tl.exp will return inf.
# Multiplying with cb, which is 0.0 outside the range, will make the result NaN.
# This will cause NaN in acc, and hence NaN in dx and ddt.
mask = (k + offs_k[None, :] >= offs_m[:, None]) & (k + offs_k[None, :] < K_MAX)
cb = tl.where(mask, cb, 0.0)
cb = cb.to(dout_ptr.dtype.element_ty)
acc += tl.dot(cb, dout)
cb_ptrs += BLOCK_SIZE_K * stride_cb_csize_k
dout_ptrs += BLOCK_SIZE_K * stride_dout_seqlen
dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dt_ptrs = dt_ptr + offs_m * stride_dt_csize
dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
dx = acc * dt_m[:, None]
dx_ptr += pid_b * stride_dx_batch + pid_c * chunk_size * stride_dx_seqlen + pid_h * stride_dx_head
dx_ptrs = dx_ptr + (offs_m[:, None] * stride_dx_seqlen + offs_n[None, :] * stride_dx_hdim)
if HAS_D:
dout_res_ptrs = dout_ptr + (offs_m[:, None] * stride_dout_seqlen + offs_n[None, :] * stride_dout_hdim)
dout_res = tl.load(dout_res_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
if D_HAS_HDIM:
D = tl.load(D_ptr + pid_h * stride_D_head + offs_n, mask=offs_n < hdim, other=0.0).to(tl.float32)
else:
D = tl.load(D_ptr + pid_h * stride_D_head).to(tl.float32)
dx += dout_res * D
tl.store(dx_ptrs, dx, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim))
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
if HAS_D:
dD_ptr += pid_b * stride_dD_batch + pid_c * stride_dD_chunk + pid_h * stride_dD_head + pid_m * stride_dD_csize
if D_HAS_HDIM:
dD_ptrs = dD_ptr + offs_n * stride_dD_hdim
dD = tl.sum(dout_res * x, axis=0)
tl.store(dD_ptrs, dD, mask=offs_n < hdim)
else:
dD = tl.sum(dout_res * x)
tl.store(dD_ptr, dD)
ddt = tl.sum(acc * x, axis=1)
ddt_ptrs = ddt_ptr + offs_m * stride_ddt_csize
tl.atomic_add(ddt_ptrs, ddt, mask=offs_m < chunk_size)
def _chunk_scan_chunk_state_bwd_dx(x, dt, dA_cumsum, B, CB, dout, dstates, D=None, seq_idx=None, dx=None):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert CB.shape == (batch, nchunks, ngroups, chunk_size, chunk_size)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert dout.shape == x.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if D is not None:
assert D.shape == (nheads, headdim) or D.shape == (nheads,)
assert D.stride(-1) == 1
BLOCK_SIZE_min = 32
dD = torch.empty(triton.cdiv(chunk_size, BLOCK_SIZE_min), batch, nchunks, nheads,
headdim if D.dim() == 2 else 1, device=D.device, dtype=torch.float32)
else:
dD = None
dD_strides = ((dD.stride(0), dD.stride(1), dD.stride(2), dD.stride(3), dD.stride(4))
if D is not None else (0, 0, 0, 0, 0))
if dx is None:
dx = torch.empty_like(x)
else:
assert dx.shape == x.shape
ddt = torch.empty(batch, nheads, nchunks, chunk_size, device=dout.device, dtype=torch.float32)
grid_dx = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(headdim, META['BLOCK_SIZE_N']),
batch * nchunks, nheads)
with torch.cuda.device(x.device.index):
_chunk_scan_chunk_state_bwd_dx_kernel[grid_dx](
x, CB, dout, dt, dA_cumsum, seq_idx, D, B, dstates, dx, ddt, dD,
chunk_size, headdim, dstate,
batch, seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
CB.stride(0), CB.stride(1), CB.stride(2), CB.stride(-1), CB.stride(-2),
dout.stride(0), dout.stride(1), dout.stride(2), dout.stride(3),
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
D.stride(0) if D is not None else 0,
B.stride(0), B.stride(1), B.stride(2), B.stride(3),
dstates.stride(0), dstates.stride(1), dstates.stride(2), dstates.stride(3), dstates.stride(4),
dx.stride(0), dx.stride(1), dx.stride(2), dx.stride(3),
ddt.stride(0), ddt.stride(2), ddt.stride(1), ddt.stride(3),
dD_strides[1], dD_strides[2], dD_strides[3], dD_strides[0], dD_strides[4],
D is not None,
D.dim() == 2 if D is not None else True,
HAS_SEQ_IDX=seq_idx is not None,
BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
IS_TRITON_22=TRITON_22
)
if D is not None:
BLOCK_SIZE_actual = _chunk_scan_chunk_state_bwd_dx_kernel.best_config.kwargs["BLOCK_SIZE_M"]
n_valid_blocks = (chunk_size + BLOCK_SIZE_actual - 1) // BLOCK_SIZE_actual
dD = dD[:n_valid_blocks].sum(dim=(0, 1, 2)).to(dtype=D.dtype)
if D.dim() == 1:
dD = rearrange(dD, "h 1 -> h")
return dx, ddt.to(dtype=dt.dtype), dD
def _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
batch, seqlen, nheads, headdim = x.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert x.shape == (batch, seqlen, nheads, headdim)
assert dt.shape == (batch, seqlen, nheads)
assert A.shape == (nheads,)
assert C.shape == B.shape
if z is not None:
assert z.shape == x.shape
if D is not None:
assert D.shape == (nheads, headdim) or D.shape == (nheads,)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if x.stride(-1) != 1 and x.stride(1) != 1: # Either M or K dimension should be contiguous
x = x.contiguous()
if z is not None and z.stride(-1) != 1 and z.stride(1) != 1: # Either M or K dimension should be contiguous
z = z.contiguous()
if D is not None and D.stride(-1) != 1:
D = D.contiguous()
if initial_states is not None:
assert initial_states.shape == (batch, nheads, headdim, dstate)
# # (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, nheads, chunk_size, chunk_size)
# dA_cumsum_tmp0, dt_tmp0 = _chunk_cumsum_fwd(dt[:, :147], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
# dA_cumsum_tmp1, dt_tmp1 = _chunk_cumsum_fwd(dt[:, 147:], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
# dA_cumsum_tmp2, dt_tmp2 = _chunk_cumsum_fwd(dt[:, 147:256], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
dA_cumsum, dt = _chunk_cumsum_fwd(dt, A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit)
states = _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=seq_idx, states_in_fp32=True)
# states_tmp0 = _chunk_state_fwd(B[:, :147], x[:, :147], dt_tmp0, dA_cumsum_tmp0, states_in_fp32=True)
# states_tmp1 = _chunk_state_fwd(B[:, 147:], x[:, 147:], dt_tmp1, dA_cumsum_tmp1, states_in_fp32=True)
# states_tmp2 = _chunk_state_fwd(B[:, 147:256], x[:, 147:256], dt_tmp2, dA_cumsum_tmp2, states_in_fp32=True)
states, final_states = _state_passing_fwd(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1],
initial_states=rearrange(initial_states, "... p n -> ... (p n)") if initial_states is not None else None,
seq_idx=seq_idx, chunk_size=chunk_size, out_dtype=C.dtype)
states, final_states = [rearrange(t, "... (p n) -> ... p n", n=dstate) for t in [states, final_states]]
# states_tmp0 = rearrange(_state_passing_fwd(rearrange(states_tmp0, "... p n -> ... (p n)"), dA_cumsum_tmp0[:, :, :, -1], chunk_size=chunk_size), "... (p n) -> ... p n", n=dstate)
# states_tmp1 = rearrange(_state_passing_fwd(rearrange(states_tmp1, "... p n -> ... (p n)"), dA_cumsum_tmp1[:, :, :, -1], chunk_size=chunk_size), "... (p n) -> ... p n", n=dstate)
CB = _bmm_chunk_fwd(C, B, chunk_size, seq_idx=seq_idx, output_dtype=torch.float32)
out, out_x = _chunk_scan_fwd(CB, x, dt, dA_cumsum, C, states, D=D, z=z, seq_idx=seq_idx)
if cu_seqlens is None:
return out, out_x, dt, dA_cumsum, states, final_states
else:
assert batch == 1, "passing cu_seqlens to get the varlen states is only supported if batch dimension is 1"
varlen_states = chunk_state_varlen(B.squeeze(0), x.squeeze(0), dt.squeeze(0), dA_cumsum.squeeze(0),
cu_seqlens, states.squeeze(0))
return out, out_x, dt, dA_cumsum, states, final_states, varlen_states
def _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, chunk_size, D=None, z=None,
dt_bias=None, initial_states=None, dfinal_states=None, seq_idx=None, dt_softplus=False,
dt_limit=(0.0, float("inf")),
dx=None, ddt=None, dB=None, dC=None, dz=None, recompute_output=False):
if dout.stride(-1) != 1:
dout = dout.contiguous()
batch, seqlen, nheads, headdim = x.shape
nchunks = math.ceil(seqlen / chunk_size)
_, _, ngroups, dstate = B.shape
assert dout.shape == (batch, seqlen, nheads, headdim)
assert dt.shape == (batch, seqlen, nheads)
assert A.shape == (nheads,)
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert C.shape == B.shape
assert out.shape == x.shape
if initial_states is not None:
assert initial_states.shape == (batch, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if dx is not None:
assert dx.shape == x.shape
if dB is not None:
assert dB.shape == B.shape
dB_given = dB
else:
dB_given = torch.empty_like(B)
if dC is not None:
assert dC.shape == C.shape
dC_given = dC
else:
dC_given = torch.empty_like(C)
if dz is not None:
assert z is not None
assert dz.shape == z.shape
if ddt is not None:
assert ddt.shape == dt.shape
ddt_given = ddt
else:
ddt_given = torch.empty_like(dt)
# TD: For some reason Triton (2.1.0 and 2.2.0) errors with
# "[CUDA]: invalid device context" (e.g. during varlne test), and cloning makes it work. Idk why.
dt_in = dt.clone()
dA_cumsum, dt = _chunk_cumsum_fwd(dt_in, A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus,
dt_limit=dt_limit)
CB = _bmm_chunk_fwd(C, B, chunk_size, seq_idx=seq_idx, output_dtype=torch.float32)
states = _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=seq_idx, states_in_fp32=True)
states, _ = _state_passing_fwd(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1],
initial_states=rearrange(initial_states, "... p n -> ... (p n)") if initial_states is not None else None,
seq_idx=seq_idx, chunk_size=chunk_size)
states = rearrange(states, "... (p n) -> ... p n", n=dstate)
if z is not None:
dz, dout, dD, *rest = _chunk_scan_bwd_dz(x, z, out, dout, chunk_size=chunk_size, has_ddAcs=False, D=D, dz=dz, recompute_output=recompute_output)
outz = rest[0] if recompute_output else out
else:
dz = None
outz = out
dstates = _chunk_scan_bwd_dstates(C, dA_cumsum, dout, seq_idx=seq_idx, dtype=states.dtype)
# dstates has length nchunks, containing the gradient to initial states at index 0 and
# gradient to the states of chunk (nchunks - 2) at index (nchunks - 1)
# Do computation in fp32 but convert dstates and states to fp16/bf16 since dstates and states
# will be used in matmul in the next kernels.
dstates, ddA_chunk_cumsum, dinitial_states, states = _state_passing_bwd(
rearrange(states, "... p n -> ... (p n)"),
dA_cumsum[:, :, :, -1],
rearrange(dstates, "... p n -> ... (p n)"),
dfinal_states=rearrange(dfinal_states, "... p n -> ... (p n)") if dfinal_states is not None else None,
seq_idx=seq_idx,
has_initial_states=initial_states is not None,
dstates_dtype=x.dtype,
states_dtype=x.dtype,
chunk_size=chunk_size,
)
# dstates has length nchunks, containing the gradient to states of chunk 0 at index 0 and
# gradient to the final states at index (nchunks - 1)
# states has length nchunks, containing the initial states at index 0 and the state for chunk (nchunks - 2) at index (nchunks - 1)
# The final states is not stored.
states = rearrange(states, "... (p n) -> ... p n", n=dstate)
dstates = rearrange(dstates, "... (p n) -> ... p n", n=dstate)
dinitial_states = rearrange(dinitial_states, "... (p n) -> ... p n", n=dstate) if dinitial_states is not None else None
dx, ddt, dD_from_x = _chunk_scan_chunk_state_bwd_dx(x, dt, dA_cumsum, B, CB, dout, dstates, D=D, seq_idx=seq_idx, dx=dx)
# dB = _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, seq_idx=seq_idx, ngroups=ngroups)
dB, ddA_next = _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, seq_idx=seq_idx, B=B, ngroups=ngroups)
# dC = _chunk_scan_bwd_dC(states[:, :-1].to(x.dtype), dA_cumsum, dout, seq_idx=seq_idx, ngroups=ngroups)
dC, ddA_cumsum_prev = _chunk_scan_bwd_dC(states.to(x.dtype), dA_cumsum, dout, seq_idx=seq_idx, C=C, ngroups=ngroups)
# Computing ddA with the dcb kernel is much slower, so we're not using it for now
dCB = _chunk_scan_bwd_dcb(x, dt, dA_cumsum, dout, seq_idx=seq_idx, ngroups=ngroups)
# dCB, ddA_tmp = _chunk_scan_bwd_dcb(x, dt, dA_cumsum, dout, seq_idx=seq_idx, CB=CB, ngroups=ngroups)
dCB = dCB.to(CB.dtype)
_bmm_chunk_bwd(C, dCB, residual=dB, out=dB_given)
_bmm_chunk_bwd(B, rearrange(dCB, "... l s -> ... s l"), residual=dC, out=dC_given)
# If we have z, then dout_x is recomputed in fp32 so dD = (dout_x * x).sum() is more accurate
# than dD_from_x = (dout_x * x).sum() where dout_x is in fp16/bf16
if z is None:
dD = dD_from_x
# Formula for ddA_cumsum, assuming out is the output of the forward pass before adding x * D.
# ddA_cumsum = torch.einsum("bclhp,bclhp->bhcl", out.float(), dout.float()) - ddt * dt
# However, this is numerically unstable: when we do the reverse cumsum on ddA_cumsum, there might
# be a lot of underflow.
# This is already done as part of bwd_dC kernel
# ddA_cumsum_prev = _chunk_scan_bwd_ddAcs_prev(states[:, :-1], C, dout, dA_cumsum, seq_idx=seq_idx)
ddA_cumsum_prev[..., -1] += ddA_chunk_cumsum
ddA_prev = ddA_cumsum_prev.flip([-1]).cumsum(dim=-1).flip([-1])
# This is already done as part of bwd_dB kernel
# ddA_next = _chunk_state_bwd_ddAcs_stable(B, x, dt, dA_cumsum, dstates, seq_idx=seq_idx)
# We don't need to pass in seq_idx because CB also zeros out entries where seq_idx[i] != seq_idx[j]
ddA = _chunk_scan_bwd_ddAcs_stable(x, dt, dA_cumsum, dout, CB)
ddA += ddA_next + ddA_prev
ddt_given, dA, ddt_bias = _chunk_cumsum_bwd(ddA, ddt, dt_in, A, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit, ddt=ddt_given)
# These 2 lines are just to test ddt and dA being computed by old code
# _, dA = selective_scan_bwd(dout, x, dt, A, B, C, D=D.float(), z=z)
# ddt_given.copy_(ddt)
return_vals = (dx, ddt_given, dA, dB_given, dC_given, dD, dz, ddt_bias, dinitial_states)
return return_vals if not recompute_output else (*return_vals, outz)
def selective_scan_bwd(dout, x, dt, A, B, C, D=None, z=None):
"""
Argument:
dout: (batch, seqlen, nheads, headdim)
x: (batch, seqlen, nheads, headdim)
dt: (batch, nheads, nchunks, chunk_size) or (batch, nheads, headdim, nchunks, chunk_size)
A: (nheads) or (dim, dstate)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
Return:
out: (batch, seqlen, nheads, headdim)
"""
import selective_scan
batch, seqlen, nheads, headdim = x.shape
chunk_size = dt.shape[-1]
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
x = rearrange(x, "b l h p -> b (h p) l")
squeeze_dt = dt.dim() == 4
if dt.dim() == 4:
dt = repeat(dt, "b h c l -> b h p c l", p=headdim)
dt = rearrange(dt, "b h p c l -> b (h p) (c l)", p=headdim)
squeeze_A = A.dim() == 1
if A.dim() == 1:
A = repeat(A, "h -> (h p) n", p=headdim, n=dstate).to(dtype=torch.float32)
else:
A = A.to(dtype=torch.float32)
B = rearrange(B, "b l g n -> b g n l")
C = rearrange(C, "b l g n -> b g n l")
if D is not None:
if D.dim() == 2:
D = rearrange(D, "h p -> (h p)")
else:
D = repeat(D, "h -> (h p)", p=headdim)
if z is not None:
z = rearrange(z, "b l h p -> b (h p) l")
if x.stride(-1) != 1:
x = x.contiguous()
if dt.stride(-1) != 1:
dt = dt.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
_, intermediate, *rest = selective_scan.fwd(x, dt.to(dtype=x.dtype), A, B, C, D, z, None, False)
if z is not None:
out = rest[0]
else:
out = None
dout = rearrange(dout, "b l h p -> b (h p) l")
if dout.stride(-1) != 1:
dout = dout.contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan with the backward of chunk).
# Here we just pass in None and dz will be allocated in the C++ code.
_, ddt, dA, *rest = selective_scan.bwd(
x, dt.to(dtype=x.dtype), A, B, C, D, z, None, dout, intermediate, out, None, False,
False # option to recompute out_z, not used here
)
ddt = rearrange(ddt, "b (h p) (c l) -> b h p c l", p=headdim, l=chunk_size)
if squeeze_dt:
ddt = ddt.float().sum(dim=2)
if squeeze_A:
dA = rearrange(dA, "(h p) n -> h p n", p=headdim).sum(dim=(1, 2))
return ddt, dA
class MambaChunkScanCombinedFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf")), return_final_states=False, return_varlen_states=False):
ctx.dt_dtype = dt.dtype
if not return_varlen_states:
cu_seqlens = None
else:
assert cu_seqlens is not None, "cu_seqlens must be provided if return_varlen_states is True"
out, out_x, dt_out, dA_cumsum, states, final_states, *rest = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, cu_seqlens=cu_seqlens, dt_softplus=dt_softplus, dt_limit=dt_limit)
ctx.save_for_backward(out if z is None else out_x, x, dt, dA_cumsum, A, B, C, D, z, dt_bias, initial_states, seq_idx)
ctx.dt_softplus = dt_softplus
ctx.chunk_size = chunk_size
ctx.dt_limit = dt_limit
ctx.return_final_states = return_final_states
ctx.return_varlen_states = return_varlen_states
if not return_varlen_states:
return out if not return_final_states else (out, final_states)
else:
varlen_states = rest[0]
return (out, varlen_states) if not return_final_states else (out, final_states, varlen_states)
@staticmethod
def backward(ctx, dout, *args):
out, x, dt, dA_cumsum, A, B, C, D, z, dt_bias, initial_states, seq_idx = ctx.saved_tensors
assert not ctx.return_varlen_states, "return_varlen_states is not supported in backward"
dfinal_states = args[0] if ctx.return_final_states else None
dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states = _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=ctx.dt_softplus, dt_limit=ctx.dt_limit)
return dx, ddt, dA, dB, dC, None, dD, dz, ddt_bias, dinitial_states, None, None, None, None, None, None
def mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf")), return_final_states=False, return_varlen_states=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
chunk_size: int
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
initial_states: (batch, nheads, headdim, dstate)
seq_idx: (batch, seqlen)
cu_seqlens: (num_sequences + 1) or None, only used if return_varlen_states is True
dt_softplus: Whether to apply softplus to dt
Return:
out: (batch, seqlen, nheads, headdim)
"""
return MambaChunkScanCombinedFn.apply(x, dt, A, B, C, chunk_size, D, z, dt_bias, initial_states, seq_idx, cu_seqlens, dt_softplus, dt_limit, return_final_states, return_varlen_states)
def mamba_chunk_scan(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, dt_softplus=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
Return:
out: (batch, seqlen, nheads, headdim)
"""
batch, seqlen, nheads, headdim = x.shape
dstate = B.shape[-1]
if seqlen % chunk_size != 0:
dt = F.pad(dt, (0, 0, 0, chunk_size - seqlen % chunk_size))
dt = rearrange(dt, "b (c l) h -> b h c l", l=chunk_size)
dt = dt.float() # We want high precision for this before cumsum
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "h -> h 1 1")
if dt_softplus:
dt = F.softplus(dt)
dA = dt * rearrange(A, "h -> h 1 1")
dA = dt * rearrange(A, "h -> h 1 1")
dA_cumsum = torch.cumsum(dA, dim=-1)
# 1. Compute the state for each chunk
states = chunk_state(B, x, dt, dA_cumsum, states_in_fp32=True)
# 2. Pass the state to all the chunks by weighted cumsum.
states = rearrange(state_passing(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1])[0],
"... (p n) -> ... p n", n=dstate)
# 3. Compute the output for each chunk
out = chunk_scan(B, C, x, dt, dA_cumsum, states, D=D, z=z)
return out
def ssd_chunk_scan_combined_ref(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, dt_softplus=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
Return:
out: (batch, seqlen, nheads, headdim)
"""
batch, seqlen, nheads, headdim = x.shape
dstate = B.shape[-1]
if seqlen % chunk_size != 0:
dt = F.pad(dt, (0, 0, 0, chunk_size - seqlen % chunk_size))
dt = rearrange(dt, "b (c l) h -> b h c l", l=chunk_size)
dt = dt.float() # We want high precision for this before cumsum
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "h -> h 1 1")
if dt_softplus:
dt = F.softplus(dt)
dA = dt * rearrange(A, "h -> h 1 1")
dA_cumsum = torch.cumsum(dA, dim=-1)
# 1. Compute the state for each chunk
states = chunk_state_ref(B, x, dt, dA_cumsum)
states_dtype = states.dtype
if states.dtype not in [torch.float32, torch.float64]:
states = states.to(torch.float32)
# 2. Pass the state to all the chunks by weighted cumsum.
# state_passing_ref is much less numerically stable
states = rearrange(state_passing_ref(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1])[0],
"... (p n) -> ... p n", n=dstate)
states = states.to(states_dtype)
# 3. Compute the output for each chunk
out = chunk_scan_ref(B, C, x, dt, dA_cumsum, states, D=D, z=z)
return out
def ssd_selective_scan(x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads) or (batch, seqlen, nheads, headdim)
A: (nheads) or (dim, dstate)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,) or (nheads, headdim)
Return:
out: (batch, seqlen, nheads, headdim)
"""
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
batch, seqlen, nheads, headdim = x.shape
_, _, ngroups, dstate = B.shape
x = rearrange(x, "b l h p -> b (h p) l")
if dt.dim() == 3:
dt = repeat(dt, "b l h -> b l h p", p=headdim)
dt = rearrange(dt, "b l h p -> b (h p) l")
if A.dim() == 1:
A = repeat(A, "h -> (h p) n", p=headdim, n=dstate).to(dtype=torch.float32)
else:
A = A.to(dtype=torch.float32)
B = rearrange(B, "b l g n -> b g n l")
C = rearrange(C, "b l g n -> b g n l")
if D is not None:
if D.dim() == 2:
D = rearrange(D, "h p -> (h p)")
else:
D = repeat(D, "h -> (h p)", p=headdim)
if z is not None:
z = rearrange(z, "b l h p -> b (h p) l")
if dt_bias is not None:
if dt_bias.dim() == 1:
dt_bias = repeat(dt_bias, "h -> h p", p=headdim)
dt_bias = rearrange(dt_bias, "h p -> (h p)")
if dt_limit != (0.0, float("inf")):
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "d -> d 1")
if dt_softplus:
dt = F.softplus(dt)
dt = dt.clamp(min=dt_limit[0], max=dt_limit[1]).to(x.dtype)
dt_bias = None
dt_softplus = None
out = selective_scan_fn(x, dt, A, B, C, D=D, z=z, delta_bias=dt_bias, delta_softplus=dt_softplus)
return rearrange(out, "b (h p) l -> b l h p", p=headdim)
def mamba_conv1d_scan_ref(xBC, conv1d_weight, conv1d_bias, dt, A, chunk_size, D=None, z=None,
dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf")),
activation="silu", headdim=None, ngroups=1):
"""
Argument:
xBC: (batch, seqlen, dim + 2 * ngroups * dstate) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt: (batch, seqlen, nheads) or (batch, seqlen, nheads, headdim)
A: (nheads)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, dim)
dt_bias: (nheads) or (nheads, headdim)
headdim: if D is 1D and z is None, headdim must be passed in
Return:
out: (batch, seqlen, dim)
"""
batch, seqlen, nheads = dt.shape[:3]
assert nheads % ngroups == 0
if z is not None:
dim = z.shape[-1]
assert dim % nheads == 0
headdim = dim // nheads
else:
if D.dim() == 1:
assert headdim is not None
else:
headdim = D.shape[1]
dim = nheads * headdim
xBC = rearrange(causal_conv1d_fn(rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias, activation=activation),
"b d s -> b s d")
dstate = (xBC.shape[-1] - dim) // ngroups // 2
x, B, C = torch.split(xBC, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads) if z is not None else None
out = ssd_selective_scan(x, dt.to(x.dtype), A, B, C, D=D.float(), z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit)
return rearrange(out, "b s h p -> b s (h p)")
class MambaSplitConv1dScanCombinedFn(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states=None, seq_idx=None, dt_limit=(0.0, float("inf")), return_final_states=False, activation="silu",
rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None,
ngroups=1, norm_before_gate=True):
assert activation in [None, "silu", "swish"]
if D.dim() == 1:
assert headdim is not None
nheads, = D.shape
else:
nheads, headdim = D.shape
batch, seqlen, _ = zxbcdt.shape
dim = nheads * headdim
assert nheads % ngroups == 0
dstate = (conv1d_weight.shape[0] - dim) // ngroups // 2
d_nonssm = (zxbcdt.shape[-1] - 2 * dim - 2 * ngroups * dstate - nheads) // 2
assert d_nonssm >= 0
assert zxbcdt.shape == (batch, seqlen, 2 * d_nonssm + 2 * dim + 2 * ngroups * dstate + nheads)
assert dt_bias.shape == (nheads,)
assert A.shape == (nheads,)
zx0, z, xBC, dt = torch.split(zxbcdt, [2 * d_nonssm, dim, dim + ngroups * dstate * 2, nheads], dim=-1)
seq_idx = seq_idx.contiguous() if seq_idx is not None else None
xBC_conv = rearrange(
causal_conv1d_cuda.causal_conv1d_fwd(rearrange(xBC, "b s d -> b d s"),
conv1d_weight, conv1d_bias, seq_idx, None, None, activation in ["silu", "swish"]),
"b d s -> b s d"
)
x, B, C = torch.split(xBC_conv, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads) if z is not None else None
if rmsnorm_weight is None:
out, out_x, dt_out, dA_cumsum, states, final_states = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size=chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=dt_limit)
out = rearrange(out, "b s h p -> b s (h p)")
rstd = None
if d_nonssm > 0:
out = torch.cat([_swiglu_fwd(zx0), out], dim=-1)
else:
out_x, _, dt_out, dA_cumsum, states, final_states = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size=chunk_size, D=D, z=None, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=dt_limit)
# reshape input data into 2D tensor
x_rms = rearrange(out_x, "b s h p -> (b s) (h p)")
z_rms = rearrange(z, "b s h p -> (b s) (h p)")
rmsnorm_weight = rmsnorm_weight.contiguous()
if d_nonssm == 0:
out = None
else:
out01 = torch.empty((batch, seqlen, d_nonssm + dim), dtype=x_rms.dtype, device=x_rms.device)
out = rearrange(out01[..., d_nonssm:], "b s d -> (b s) d")
_swiglu_fwd(zx0, out=out01[..., :d_nonssm])
out, _, rstd = _layer_norm_fwd(x_rms, rmsnorm_weight, None, rmsnorm_eps, z_rms, out=out,
group_size=dim // ngroups,
norm_before_gate=norm_before_gate, is_rms_norm=True)
if d_nonssm == 0:
out = rearrange(out, "(b s) d -> b s d", b=batch)
else:
out = out01
ctx.outproj_weight_dtype = outproj_weight.dtype if outproj_weight is not None else None
if outproj_weight is not None:
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
out, outproj_weight = out.to(dtype), outproj_weight.to(dtype)
outproj_bias = outproj_bias.to(dtype) if outproj_bias is not None else None
out = F.linear(out, outproj_weight, outproj_bias)
else:
assert outproj_bias is None
ctx.save_for_backward(zxbcdt, conv1d_weight, conv1d_bias,
out_x, A, D, dt_bias, initial_states, seq_idx, rmsnorm_weight, rstd, outproj_weight, outproj_bias)
ctx.dt_limit = dt_limit
ctx.return_final_states = return_final_states
ctx.activation = activation
ctx.rmsnorm_eps = rmsnorm_eps
ctx.norm_before_gate = norm_before_gate
ctx.chunk_size = chunk_size
ctx.headdim = headdim
ctx.ngroups = ngroups
return out if not return_final_states else (out, final_states)
@staticmethod
@custom_bwd
def backward(ctx, dout, *args):
zxbcdt, conv1d_weight, conv1d_bias, out, A, D, dt_bias, initial_states, seq_idx, rmsnorm_weight, rstd, outproj_weight, outproj_bias = ctx.saved_tensors
dfinal_states = args[0] if ctx.return_final_states else None
headdim = ctx.headdim
nheads = D.shape[0]
dim = nheads * headdim
assert nheads % ctx.ngroups == 0
dstate = (conv1d_weight.shape[0] - dim) // ctx.ngroups // 2
d_nonssm = (zxbcdt.shape[-1] - 2 * dim - 2 * ctx.ngroups * dstate - nheads) // 2
assert d_nonssm >= 0
recompute_output = outproj_weight is not None
if recompute_output:
out_recompute = torch.empty(*out.shape[:2], d_nonssm + dim, device=out.device, dtype=out.dtype)
out0_recompute, out1_recompute = out_recompute.split([d_nonssm, dim], dim=-1)
zx0, z, xBC, dt = torch.split(zxbcdt, [2 * d_nonssm, dim, dim + 2 * ctx.ngroups * dstate, nheads], dim=-1)
# Recompute x, B, C
xBC_conv = rearrange(
causal_conv1d_cuda.causal_conv1d_fwd(rearrange(xBC, "b s d -> b d s"),
conv1d_weight, conv1d_bias, seq_idx, None, None, ctx.activation in ["silu", "swish"]),
"b d s -> b s d"
)
x, B, C = torch.split(xBC_conv, [dim, ctx.ngroups * dstate, ctx.ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ctx.ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ctx.ngroups)
dzxbcdt = torch.empty_like(zxbcdt)
dzx0, dz, dxBC_given, ddt_given = torch.split(dzxbcdt, [2 * d_nonssm, dim, dim + 2 * ctx.ngroups * dstate, nheads], dim=-1)
dxBC = torch.empty_like(xBC)
dx, dB, dC = torch.split(dxBC, [dim, ctx.ngroups * dstate, ctx.ngroups * dstate], dim=-1)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads)
dx = rearrange(dx, "b l (h p) -> b l h p", h=nheads)
dB = rearrange(dB, "b l (g n) -> b l g n", g=ctx.ngroups)
dC = rearrange(dC, "b l (g n) -> b l g n", g=ctx.ngroups)
if outproj_weight is not None:
dout_og = dout
dout = F.linear(dout, outproj_weight.t())
if d_nonssm > 0:
dout0, dout = dout.split([d_nonssm, dim], dim=-1)
_swiglu_bwd(zx0, dout0, dxy=dzx0, recompute_output=True, out=out0_recompute)
dout = rearrange(dout, "b s (h p) -> b s h p", p=headdim)
if rmsnorm_weight is None:
dz = rearrange(dz, "b l (h p) -> b l h p", h=nheads)
dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states, *rest = _mamba_chunk_scan_combined_bwd(
dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=ctx.dt_limit, dx=dx, ddt=ddt_given, dB=dB, dC=dC, dz=dz, recompute_output=recompute_output
)
out_for_linear = rearrange(rest[0], "b s h p -> b s (h p)") if recompute_output else None
drmsnorm_weight = None
else:
batch = dout.shape[0]
dy_rms = rearrange(dout, "b s h p -> (b s) (h p)")
dz = rearrange(dz, "b l d -> (b l) d")
x_rms = rearrange(out, "b s h p -> (b s) (h p)")
z_rms = rearrange(z, "b s h p -> (b s) (h p)")
out1_recompute = rearrange(out1_recompute, "b s d -> (b s) d") if recompute_output else None
dout, drmsnorm_weight, _, dz, *rest = _layer_norm_bwd(dy_rms, x_rms, rmsnorm_weight, None, ctx.rmsnorm_eps, None, rstd, z_rms, norm_before_gate=ctx.norm_before_gate, is_rms_norm=True, recompute_output=recompute_output, dz=dz, out=out1_recompute if recompute_output else None)
out_for_linear = out_recompute if recompute_output else None
dout = rearrange(dout, "(b s) (h p) -> b s h p", b=batch, p=headdim)
dx, ddt, dA, dB, dC, dD, _, ddt_bias, dinitial_states = _mamba_chunk_scan_combined_bwd(
dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=None, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=ctx.dt_limit, dx=dx, ddt=ddt_given, dB=dB, dC=dC
)
if outproj_weight is not None:
doutproj_weight = torch.einsum("bso,bsd->od", dout_og, out_for_linear)
doutproj_bias = dout_og.sum(dim=(0, 1)) if outproj_bias is not None else None
else:
doutproj_weight, doutproj_bias = None, None
dxBC_given = rearrange(dxBC_given, "b s d -> b d s")
dxBC_given, dweight, dbias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias,
rearrange(dxBC, "b s d -> b d s"), seq_idx, None, None, dxBC_given, False, ctx.activation in ["silu", "swish"]
)
dxBC_given = rearrange(dxBC_given, "b d s -> b s d")
return dzxbcdt, dweight, dbias, ddt_bias, dA, dD, None, dinitial_states, None, None, None, None, drmsnorm_weight, None, doutproj_weight, doutproj_bias, None, None, None
def mamba_split_conv1d_scan_combined(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states=None, seq_idx=None, dt_limit=(0.0, float("inf")), return_final_states=False, activation="silu", rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None, ngroups=1, norm_before_gate=True):
"""
Argument:
zxbcdt: (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt_bias: (nheads,)
A: (nheads)
D: (nheads, headdim) or (nheads,)
initial_states: (batch, nheads, headdim, dstate)
seq_idx: (batch, seqlen), int32
rmsnorm_weight: (dim,)
outproj_weight: (out_dim, dim)
outproj_bias: (out_dim,)
headdim: if D is 1D, headdim must be passed in
norm_before_gate: if True, we do RMSNorm(x) * F.silu(z). If False, we do RMSNorm(x * F.silu(z))
Return:
out: (batch, seqlen, dim)
"""
return MambaSplitConv1dScanCombinedFn.apply(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states, seq_idx, dt_limit, return_final_states, activation, rmsnorm_weight, rmsnorm_eps, outproj_weight, outproj_bias, headdim, ngroups, norm_before_gate)
def mamba_split_conv1d_scan_ref(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, dt_limit=(0.0, float("inf")), activation="silu", rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None, ngroups=1, norm_before_gate=True):
"""
Argument:
zxbcdt: (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt_bias: (nheads,)
A: (nheads)
D: (nheads, headdim) or (nheads,)
rmsnorm_weight: (dim,)
outproj_weight: (out_dim, dim)
outproj_bias: (out_dim,)
headdim: if D is 1D, headdim must be passed in
norm_before_gate: if True, we do RMSNorm(x) * F.silu(z). If False, we do RMSNorm(x * F.silu(z))
Return:
out: (batch, seqlen, dim)
"""
if D.dim() == 1:
assert headdim is not None
nheads, = D.shape
else:
nheads, headdim = D.shape
assert nheads % ngroups == 0
batch, seqlen, _ = zxbcdt.shape
dim = nheads * headdim
dstate = (zxbcdt.shape[-1] - 2 * dim - nheads) // ngroups // 2
assert zxbcdt.shape == (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads)
assert dt_bias.shape == (nheads,)
assert A.shape == (nheads,)
if rmsnorm_weight is not None:
assert rmsnorm_weight.shape == (dim,)
z, xBC, dt = torch.split(zxbcdt, [dim, dim + 2 * ngroups * dstate, nheads], dim=-1)
xBC = rearrange(causal_conv1d_fn(rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias, activation=activation),
"b d s -> b s d")
x, B, C = torch.split(xBC, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads)
out = ssd_selective_scan(x, dt.to(x.dtype), A, B, C, D=D.float(),
z=z if rmsnorm_weight is None else None, dt_bias=dt_bias, dt_softplus=True, dt_limit=dt_limit)
out = rearrange(out, "b s h p -> b s (h p)")
if rmsnorm_weight is not None:
out = rmsnorm_fn(out, rmsnorm_weight, None, z=rearrange(z, "b l h p -> b l (h p)"), eps=rmsnorm_eps,
norm_before_gate=norm_before_gate)
if outproj_weight is not None:
out = F.linear(out, outproj_weight, outproj_bias)
return out