forked from lancedb/vectordb-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
53 lines (44 loc) · 2.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from datasets import load_dataset
from panns_inference import AudioTagging
from tqdm import tqdm
from IPython.display import Audio, display
import numpy as np
import lancedb
def create_audio_embedding(audio_data):
return at.inference(audio_data)
def insert_audio():
batches = [batch["audio"] for batch in dataset.iter(100)]
meta_batches = [batch["category"] for batch in dataset.iter(100)]
audio_data = [np.array([audio["array"] for audio in batch]) for batch in batches]
meta_data = [np.array([meta for meta in batch]) for batch in meta_batches]
for i in tqdm(range(len(audio_data))):
(_, embedding) = create_audio_embedding(audio_data[i])
data = [{"audio": x[0]['array'], "vector": x[1], 'sampling_rate': x[0]['sampling_rate'], 'category': x[2]} for x in zip(batches[i], embedding, meta_data[i])]
if table_name not in db.table_names():
tbl = db.create_table(table_name, data)
else:
tbl = db.open_table(table_name)
tbl.add(data)
def search_audio(id):
tbl = db.open_table(table_name)
audio = dataset[id]['audio']['array']
category = dataset[id]['category']
display(Audio(audio, rate=dataset[id]['audio']['sampling_rate']))
print("Category:", category)
(_, embedding) = create_audio_embedding(audio[None, :])
result = tbl.search(embedding[0]).limit(5).to_df()
print(result)
for i in range(len(result)):
display(Audio(result['audio'][i], rate=result['sampling_rate'][i]))
print("Category:", result['category'][i])
if __name__ == "__main__":
global dataset, at, db, table_name
dataset = load_dataset("ashraq/esc50", split="train")
at = AudioTagging(checkpoint_path=None, device="cuda")
db = lancedb.connect("data/audio-lancedb")
table_name = "audio-search"
# This function will take a while to run
# Run if you don't have the LanceDB table yet, but skip if you already have it
insert_audio()
# The audio won't display in command line, but it will display in Jupyter Notebook
search_audio(500)