-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0054.cpp
345 lines (318 loc) · 12.5 KB
/
euler-0054.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// ////////////////////////////////////////////////////////
// # Title
// Poker hands
//
// # URL
// https://projecteuler.net/problem=54
// http://euler.stephan-brumme.com/54/
//
// # Problem
// In the card game poker, a hand consists of five cards and are ranked, from lowest to highest, in the following way:
//
// || 8 || 0
// || High Card: || Highest value card.
// || One Pair: || Two cards of the same value.
// || Two Pairs: || Two different pairs.
// || Three of a Kind: || Three cards of the same value.
// || Straight: || All cards are consecutive values.
// || Flush: || All cards of the same suit.
// || Full House: || Three of a kind and a pair.
// || Four of a Kind: || Four cards of the same value.
// || Straight Flush: || All cards are consecutive values of same suit.
// || Royal Flush: || Ten, Jack, Queen, King, Ace, in same suit.
//
// The cards are valued in the order: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace.
//
// If two players have the same ranked hands then the rank made up of the highest value wins;
// for example, a pair of eights beats a pair of fives (see example 1 below).
// But if two ranks tie, for example, both players have a pair of queens, then highest cards in each hand are compared (see example 4 below);
// if the highest cards tie then the next highest cards are compared, and so on.
//
// Consider the following five hands dealt to two players:
// || 4 || 9 || 9 || 4 ||
// || Hand || Player 1 || Player 2 || Winner ||
// ||------||---------------------||---------------------||----------||
// || 1 || 5H 5C 6S 7S KD || 2C 3S 8S 8D TD || Player 2 ||
// || || Pair of Fives || Pair of Eights || ||
//
// || 2 || 5D 8C 9S JS AC || 2C 5C 7D 8S QH || Player 1 ||
// || || Highest card Ace || Highest card Queen || ||
//
// || 3 || 2D 9C AS AH AC || 3D 6D 7D TD QD || Player 2 ||
// || || Three Aces || Flush with Diamonds || ||
//
// || 4 || 4D 6S 9H QH QC || 3D 6D 7H QD QS || Player 1 ||
// || || Pair of Queens || Pair of Queens || ||
// || || Highest card Nine || Highest card Seven || ||
//
// || 5 || 2H 2D 4C 4D 4S || 3C 3D 3S 9S 9D || Player 1 ||
// || || Full House || Full House || ||
// || || With Three Fours || With Three Threes || ||
//
// The file, [poker.txt](https://projecteuler.net/project/resources/p054_poker.txt), contains one-thousand random hands dealt to two players.
// Each line of the file contains ten cards (separated by a single space): the first five are Player 1's cards and the last five are Player 2's cards.
// You can assume that all hands are valid (no invalid characters or repeated cards), each player's hand is in no specific order, and in each hand there is a clear winner.
//
// How many hands does Player 1 win?
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// ''cardMask'' converts a string to a 64 bit integer bitmask:
// There are 13 different poker cards (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace) of 4 different suits (Diamonds, Hearts, Spades and Clubs).
// Each of those `13 * 4 = 52` cards is assigned to a certain bit position:
// || 4 || 5 || 5 || 5 || 5 || 5 || 5 || 5 || 5
// || Card: || ''00000000'' || ''0000AKQJ'' || ''T9876543'' || ''2AKQJT98'' || ''765432AK'' || ''QJT98765'' || ''432AKQJT'' || ''98765432''
// || Suit: || ''00000000'' || ''0000CCCC'' || ''CCCCCCCC'' || ''CSSSSSSS'' || ''SSSSSSHH'' || ''HHHHHHHH'' || ''HHHDDDDD'' || ''DDDDDDDD''
//
// Each binary representation of a valid Poker hand has exactly 5 bits set.
// If a player holds Hearts 2, Diamonds 7, Diamonds King, Clubs King and Clubs Ace, then the binary representation is:
// || 4 || 5 || 5 || 5 || 5 || 5 || 5 || 5 || 5
// || || ''00000000'' || ''00001100'' || ''00000000'' || ''00000000'' || ''00000000'' || ''00000000'' || ''00101000'' || ''00100000''
//
// ''rank'' assigns a value to a hand of five Poker cards: a hand with a lower value beats all hands with a higher value.
// There are a few steps I always do before actually evaluating a hand:
// 1. figure out whether we have a straight (5 consecutive bits are set or A2345)
// 2. count how often each card is present, ignoring its suit
// 3. do all cards share the same suit ? (a flush)
//
// Then a number is assigned to each hand:
// || 8 || 0
// || Royal Flush || 1
// || Straight Flush || 2..10
// || Four of a Kind || 10000000000 + 100*four + 1*single
// || Full House || 20000000000 + 100*three + 1*two
// || Flush || 30000000000 + 100000000*highest + 100000*second + 10000*third + 100*fourth + 1*worst
// || Straight || 40000000000 + 1..10
// || Three of a Kind || 50000000000 + 10000*three + 100*bestSingle + 1*worstSingle
// || Two Pairs || 60000000000 + 10000*bestPair + 100*wordPair + 1*single
// || One Pair || 70000000000 + 1000000*pair + 10000*bestSingle + 100*middleSingle + 1*worstSingle
// || High Card || 80000000000 + 100000000*highest + 100000*second + 10000*third + 100*fourth + 1*worst
//
// My number system isn't very efficient but quite easy to debug.
// There are actually only 2598960 different hands `\binom{52}{5} = frac{52!}{(52-5)!5!}`.
//
// # Alternative
// There is an endless number of Poker hand evaluators available on the internet.
// And I am pretty sure you will find an endless number of ways to evaluate a Poker hand.
//
// # Note
// My program doesn't check its input. It must follow the syntax defined by the problem statement (which is a widely accepted Poker hand notation).
#include <string>
#include <iostream>
const unsigned long long Card2 = 1ULL << 0;
const unsigned long long Card3 = 1ULL << 1;
const unsigned long long Card4 = 1ULL << 2;
const unsigned long long Card5 = 1ULL << 3;
const unsigned long long Card6 = 1ULL << 4;
const unsigned long long Card7 = 1ULL << 5;
const unsigned long long Card8 = 1ULL << 6;
const unsigned long long Card9 = 1ULL << 7;
const unsigned long long CardT = 1ULL << 8;
const unsigned long long CardJ = 1ULL << 9;
const unsigned long long CardQ = 1ULL << 10;
const unsigned long long CardK = 1ULL << 11;
const unsigned long long CardA = 1ULL << 12;
// convert a card to a 52-bitmask
unsigned long long cardMask(const std::string& card) // card format is 5H for 5 of hearts
{
// bit mask structure:
// bits from 0 to 12 are 23456789TJQKA of diamonds
// bits from 13 to 25 are 23456789TJQKA of hearts
// bits from 26 to 38 are 23456789TJQKA of spades
// bits from 39 to 51 are 23456789TJQKA of clubs
// bits 52+ are zero
unsigned long long result = 0;
switch (card[0])
{
case '2': result = Card2; break;
case '3': result = Card3; break;
case '4': result = Card4; break;
case '5': result = Card5; break;
case '6': result = Card6; break;
case '7': result = Card7; break;
case '8': result = Card8; break;
case '9': result = Card9; break;
case 'T': result = CardT; break;
case 'J': result = CardJ; break;
case 'Q': result = CardQ; break;
case 'K': result = CardK; break;
case 'A': result = CardA; break;
default: break;
}
switch (card[1])
{
case 'D': break;
case 'H': result <<= 13; break;
case 'S': result <<= 26; break;
case 'C': result <<= 39; break;
default: break;
}
return result;
}
// each hand with a certain rank beats all hands with a higher rank
unsigned long long rank(unsigned long long hand)
{
// set the lowest 13 bits (= 13 cards of a suit)
const auto Suit = (1LL << 13) - 1;
// ignore color (convert all cards to diamonds)
auto colorless = (hand | (hand >> 13) | (hand >> 26) | (hand >> 39)) & Suit;
// greater zero if straight (better straights get higher value)
unsigned int straight = 0;
if (colorless == (CardT | CardJ | CardQ | CardK | CardA)) straight = 1;
if (colorless == (Card9 | CardT | CardJ | CardQ | CardK)) straight = 2;
if (colorless == (Card8 | Card9 | CardT | CardJ | CardQ)) straight = 3;
if (colorless == (Card7 | Card8 | Card9 | CardT | CardJ)) straight = 4;
if (colorless == (Card6 | Card7 | Card8 | Card9 | CardT)) straight = 5;
if (colorless == (Card5 | Card6 | Card7 | Card8 | Card9)) straight = 6;
if (colorless == (Card4 | Card5 | Card6 | Card7 | Card8)) straight = 7;
if (colorless == (Card3 | Card4 | Card5 | Card6 | Card7)) straight = 8;
if (colorless == (Card2 | Card3 | Card4 | Card5 | Card6)) straight = 9;
if (colorless == (CardA | Card2 | Card3 | Card4 | Card5)) straight = 10;
// pairs, triple, fours
unsigned int count[13] = { 0,0,0,0,0,0,0,0,0,0,0,0,0 };
for (unsigned int i = 0; i < 13; i++)
{
if (hand & (1ULL << i))
count[i]++;
if (hand & (1ULL << (i+13)))
count[i]++;
if (hand & (1ULL << (i+26)))
count[i]++;
if (hand & (1ULL << (i+39)))
count[i]++;
}
// true, if all cards share the same colors
bool isFlush = (hand == colorless) ||
(hand == (colorless << 13)) ||
(hand == (colorless << 26)) ||
(hand == (colorless << 39));
// allocate 10000000000 IDs per category (flush, straight, pairs, etc.)
const unsigned long long GroupSize = 10000000000ULL; // burn up to two digits per card
unsigned long long result = 0;
// royal flush and straight flush
if (isFlush && straight > 0)
return result + straight;
result += GroupSize;
// four-of-a-kind
for (unsigned int i = 0; i < 13; i++)
if (count[i] == 4)
for (unsigned int j = 0; j < 13; j++)
if (count[j] == 1)
return result + (13 - i) * 100 + (13 - j);
result += GroupSize;
// full-house
for (unsigned int i = 0; i < 13; i++)
if (count[i] == 3)
for (unsigned int j = 0; j < 13; j++)
if (count[j] == 2)
return result + (13 - i) * 100 + (13 - j);
result += GroupSize;
// flush
if (isFlush)
{
unsigned long long value = 0;
for (int i = 12; i >= 0; i--)
if (count[i] == 1)
{
value *= 100;
value += 13 - i;
}
return result + value;
}
result += GroupSize;
// straight
if (straight > 0)
return result + straight;
result += GroupSize;
// three
for (unsigned int i = 0; i < 13; i++)
if (count[i] == 3)
{
unsigned long long value = 13 - i;
for (int j = 12; j >= 0; j--)
if (count[j] == 1)
{
value *= 100;
value += 13 - j;
}
return result + value;
}
result += GroupSize;
// one or two pairs
unsigned int numPairs = 0;
for (unsigned int i = 0; i < 13; i++)
if (count[i] == 2)
numPairs++;
if (numPairs > 0)
{
unsigned long long value = 0;
// pairs
for (int i = 12; i >= 0; i--)
if (count[i] == 2)
{
value *= 100;
value += 13 - i;
}
// single card(s)
for (int i = 12; i >= 0; i--)
if (count[i] == 1)
{
value *= 100;
value += 13 - i;
}
if (numPairs == 1)
result += GroupSize;
return result + value;
}
result += 2 * GroupSize; // one and two pairs
// high card
unsigned long long value = 0;
for (int i = 12; i >= 0; i--)
if (count[i] == 1)
{
value *= 100;
value += 13 - i;
}
return result + value;
}
int main()
{
unsigned int tests = 1000;
//#define ORIGINAL
#ifdef ORIGINAL
unsigned int won1 = 0;
unsigned int won2 = 0;
#else
std::cin >> tests;
#endif
while (tests--)
{
std::string cards1[5], cards2[5];
std::cin >> cards1[0] >> cards1[1] >> cards1[2] >> cards1[3] >> cards1[4];
std::cin >> cards2[0] >> cards2[1] >> cards2[2] >> cards2[3] >> cards2[4];
// convert to bitmask and merge with logical OR
auto player1 = cardMask(cards1[0]) | cardMask(cards1[1]) | cardMask(cards1[2]) |
cardMask(cards1[3]) | cardMask(cards1[4]);
auto player2 = cardMask(cards2[0]) | cardMask(cards2[1]) | cardMask(cards2[2]) |
cardMask(cards2[3]) | cardMask(cards2[4]);
// lower rank wins
auto rank1 = rank(player1);
auto rank2 = rank(player2);
#ifdef ORIGINAL
if (rank1 < rank2)
won1++;
if (rank1 > rank2)
won2++;
#else
std::cout << "Player " << (rank1 < rank2 ? "1" : "2") << std::endl;
#endif
}
#ifdef ORIGINAL
std::cout << won1 << std::endl;
//std::cout << won2 << std::endl;
#endif
return 0;
}