-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0064.cpp
167 lines (155 loc) · 6.37 KB
/
euler-0064.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// ////////////////////////////////////////////////////////
// # Title
// Odd period square roots
//
// # URL
// https://projecteuler.net/problem=64
// http://euler.stephan-brumme.com/64/
//
// # Problem
// All square roots are periodic when written as continued fractions and can be written in the form:
// `sqrt{N} = a_0 + dfrac{1}{a_1 + frac{1}{a_2 + frac{1}{a_3 + ...}}}`
//
// For example, let us consider `sqrt{23}`:
// `sqrt{23} = 4 + sqrt{23} - 4 = 4 + dfrac{1}{frac{1}{sqrt{23}-4}} = 4 + dfrac{1}{1 + frac{sqrt{23}-3}{7}}`
//
// If we continue we would get the following expansion:
// `sqrt{23} = 4 + dfrac{1}{1 + dfrac{1}{3 + dfrac{1}{1 + frac{1}{8 + ...}}}}`
//
// The process can be summarised as follows:
// `a_0 = 4, dfrac{1}{sqrt{23}-4} = dfrac{sqrt{23}+4}{7} = 1 + dfrac{sqrt{23}-3}{7}`
//
// `a_1 = 1, dfrac{7}{sqrt{23}-3} = dfrac{7(sqrt{23}+3)}{14} = 3 + dfrac{sqrt{23}-3}{2}`
//
// `a_2 = 3, dfrac{2}{sqrt{23}-3} = dfrac{2(sqrt{23}+3)}{14} = 1 + dfrac{sqrt{23}-4}{7}`
//
// `a_3 = 1, dfrac{7}{sqrt{23}-4} = dfrac{7(sqrt{23}+4)}{7} = 8 + dfrac{sqrt{23}-4}{1}`
//
// `a_4 = 8, dfrac{1}{sqrt{23}-4} = dfrac{sqrt{23}+4}{7} = 1 + dfrac{sqrt{23}-3}{7}`
//
// `a_5 = 1, dfrac{7}{sqrt{23}-3} = dfrac{7(sqrt{23}+3)}{14} = 3 + dfrac{sqrt{23}-3}{2}`
//
// `a_6 = 3, dfrac{2}{sqrt{23}-3} = dfrac{2(sqrt{23}+3)}{14} = 1 + dfrac{sqrt{23}-4}{7}`
//
// `a_7 = 1, dfrac{7}{sqrt{23}-4} = dfrac{7(sqrt{23}+4)}{7} = 8 + dfrac{sqrt{23}-4}{1}`
//
// It can be seen that the sequence is repeating. For conciseness, we use the notation `sqrt{23} = [4;(1,3,1,8)]`, to indicate that the block `(1,3,1,8)` repeats indefinitely.
//
// The first ten continued fraction representations of (irrational) square roots are:
//
// `sqrt{2} = [1;(2)]`, period=1
// `sqrt{3} = [1;(1,2)]`, period=2
// `sqrt{5} = [2;(4)]`, period=1
// `sqrt{6} = [2;(2,4)]`, period=2
// `sqrt{7} = [2;(1,1,1,4)]`, period=4
// `sqrt{8} = [2;(1,4)]`, period=2
// `sqrt{10} = [3;(6)]`, period=1
// `sqrt{11} = [3;(3,6)]`, period=2
// `sqrt{12} = [3;(2,6)]`, period=2
// `sqrt{13} = [3;(1,1,1,1,6)]`, period=4
//
// Exactly four continued fractions, for `N <= 13`, have an odd period.
// How many continued fractions for `N <= 10000` have an odd period?
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// I didn't know anything about continued fractions before I saw this problem. The Wikipedia article is pretty long: https://en.wikipedia.org/wiki/Continued_fraction
// Even more important, there is another Wikipedia article about the relationship of square roots and continued fractions: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Continued_fraction_expansion
//
// The whole algorithm can be found in my function ''getPeriodLength''.
// My first step is to find the integer part of the square root. That's pretty easy:
// ''root = sqrt(x)'' ==> if ''root*root == x'' then ''x'' is a perfect square and we can abort.
//
// In the example above, `x=4` and `root=4`. Even though `a_0` was the first step, there is a step before it (kind of `a_{-1}`):
// `sqrt{23} = 0 + dfrac{sqrt{23} - 0}{1}`
// The variable ''numerator = 0'' refers to the zero which is subtracted in the numerator.
// The variable ''denominator = 1'' refers to the 1 in the denominator.
// The variable ''a = root'' will be `a_0`.
//
// I do the following to compute `a_1`:
// `numerator = denominator * a - numerator` ==> `numerator_1 = 1 * 4 - 0 = 4`
//
// `denominator = \lfloor dfrac{x - numerator^2}{denominator} \rfloor` ==> `denominator_1 = \lfloor dfrac{23 - 4^2}{1} \rfloor = 7`
//
// `a = \lfloor dfrac{root + numerator}{denominator} \rfloor` ==> `a_1 = \lfloor dfrac{4 + 4}{7} \rfloor = 1`
//
// As you can see in the problem statement, the first line contained the fraction `dfrac{sqrt{23}+4}{7}`
//
// And for `a_2`:
// `numerator_2 = 7 * 1 - 4 = 3`
//
// `denominator_2 = \lfloor dfrac{23 - 3^2}{7} \rfloor = 2`
//
// `a_2 = \lfloor dfrac{4 + 3}{2} \rfloor = 3`
//
// The mathematical reasoning is based on the general concept that `(a - b) * (a + b) = a^2 - b^2`.
// If `a = sqrt{x}` and `b = y` then `(sqrt{x} - y) * (sqrt{x} + y) = x - y^2`
//
// For `x = 23` and `y = \lfloor sqrt{x} \rfloor = \lfloor sqrt{23} \rfloor = 4`:
// `dfrac{1}{(sqrt{23} - 4)}`
//
// `= dfrac{sqrt{23} + 4}{(sqrt{23} - 4) * (sqrt{23} + 4)}`
//
// `= dfrac{sqrt{23} + 4}{23 - 4^2}`
//
// `= dfrac{sqrt{23} + 4}{7}`
//
// Then the largest possible integer such that 0 < numerator < denominator:
// `= dfrac{sqrt{23} + 4 - 7 + 7}{7}`
//
// `= 1 + dfrac{sqrt{23} - 3}{7}`
//
// A loop can be identified by keeping track of the tupel ''(a, numerator, denominator)''. If it appears a second time, we have entered a loop.
// We could create a data structure - something like ''std::set<std::tupel>'' - but Wikipedia mentions a neat trick that I don't understand:
// The equation ''a == 2 * root'' becomes true as soon as we enter a loop.
#include <cmath>
#include <iostream>
// return length of period or 0 for perfect squares
unsigned int getPeriodLength(unsigned int x)
{
// without any fractional part yet ...
unsigned int root = sqrt(x);
// exclude perfect squares (no period)
if (root * root == x)
return 0;
// the integer part of sqrt(x)
unsigned int a = root;
// let's use a variable numerator to store what we subtract
unsigned int numerator = 0; // initially zero, e.g. 4 will appear in second iteration of sqrt(23)
unsigned int denominator = 1; // initially one, e.g. 7 will appear in second iteration of sqrt(23)
// count how long it takes until the next period starts
unsigned int period = 0;
// terminate when we see the same triplet (a, numerator, denominator) a second time
// to me it wasn't obvious that this happens exactly when a == 2 * root
// but thanks to Wikipedia for that trick ...
while (a != 2 * root)
{
numerator = denominator * a - numerator;
// must be integer divisions !
denominator = (x - numerator * numerator) / denominator;
a = (root + numerator) / denominator;
period++;
}
return period;
}
int main()
{
unsigned int last;
std::cin >> last;
// count all odd periods
unsigned int numOdd = 0;
for (unsigned int i = 2; i <= last; i++) // 0 and 1 are perfect squares
{
unsigned int period = getPeriodLength(i);
// count number of odd lengths (if not a perfect square)
if (period % 2 == 1)
numOdd++;
// branchless: numOdd += period & 1;
}
// print result
std::cout << numOdd << std::endl;
return 0;
}