About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the minimum value of a strided array according to a mask.
To use in Observable,
mskmin = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-mskmin@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var mskmin = require( 'path/to/vendor/umd/stats-base-mskmin/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-mskmin@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.mskmin;
})();
</script>
Computes the minimum value of a strided array x
according to a mask
.
var x = [ 1.0, -2.0, -4.0, 2.0 ];
var mask = [ 0, 0, 1, 0 ];
var v = mskmin( x.length, x, 1, mask, 1 );
// returns -2.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - strideX: index increment for
x
. - mask: mask
Array
ortyped array
. If amask
array element is0
, the corresponding element inx
is considered valid and included in computation. If amask
array element is1
, the corresponding element inx
is considered invalid/missing and excluded from computation. - strideMask: index increment for
mask
.
The N
and stride
parameters determine which elements are accessed at runtime. For example, to compute the minimum value of every other element in x
,
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 1.0, 2.0, -7.0, -2.0, 4.0, 3.0, -5.0, -6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var N = floor( x.length / 2 );
var v = mskmin( N, x, 2, mask, 2 );
// returns -7.0
Note that indexing is relative to the first index. To introduce offsets, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = mskmin( N, x1, 2, mask1, 2 );
// returns -2.0
Computes the minimum value of a strided array according to a mask
and using alternative indexing semantics.
var x = [ 1.0, -2.0, -4.0, 2.0 ];
var mask = [ 0, 0, 1, 0 ];
var v = mskmin.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns -2.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetMask: starting index for
mask
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the minimum value for every other value in x
starting from the second value
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var N = floor( x.length / 2 );
var v = mskmin.ndarray( N, x, 2, 1, mask, 2, 1 );
// returns -2.0
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-randu@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-round@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-uint8@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-mskmin@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var mask;
var x;
var i;
x = new Float64Array( 10 );
mask = new Uint8Array( x.length );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
mask[ i ] = 1;
} else {
mask[ i ] = 0;
}
x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );
console.log( mask );
var v = mskmin( x.length, x, 1, mask, 1 );
console.log( v );
})();
</script>
</body>
</html>
@stdlib/stats-base/dmskmin
: calculate the minimum value of a double-precision floating-point strided array according to a mask.@stdlib/stats-base/min
: calculate the minimum value of a strided array.@stdlib/stats-base/mskmax
: calculate the maximum value of a strided array according to a mask.@stdlib/stats-base/nanmin
: calculate the minimum value of a strided array, ignoring NaN values.@stdlib/stats-base/smskmin
: calculate the minimum value of a single-precision floating-point strided array according to a mask.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.