forked from MiroK/emi-cylinders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
array.geo
261 lines (243 loc) · 7.25 KB
/
array.geo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
n_cylinders = 4;
// The first cylinder has center at x0, y0, z0
x0 = 0;
y0 = 0;
z0 = 0;
// The height of each cylinder is H with char mesh size size_c
R = 0.5;
H = 1.5;
size_R = 0.2;
// The height of the joint regions is h with char mesh size size_r
r = 0.25;
h = 0.5;
size_r = 0.2;
// The cylinders are enclosed in a bbox which leaves dx, dy gaps around the
// square that bounds the cylinder crossection. In z direction the gap is dz.
// For bbox the char size is size_b
dx = 0.2;
dy = 0.2;
dz = 0.2;
size_b = 0.3;
// Each cylinder volume gets number 1, ..., n_cylinders. These markers are also
// inherited by surfaces that bound the cylinder except the surface that is
// shared by 2 cylinders. The label for the cylinder is (volume label +
// n_cylinders). The outer volume, i.e. bounding box - cylinder union is tagged
// as 0
//! Cut here
// We draw the first guy by hand
// Joint
p = newp;
Point(p) = {x0, y0, z0-H/2-h/2, size_r};
Point(p+1) = {x0+r, y0, z0-H/2-h/2, size_r};
Point(p+2) = {x0, y0+r, z0-H/2-h/2, size_r};
Point(p+3) = {x0-r, y0, z0-H/2-h/2, size_r};
Point(p+4) = {x0, y0-r, z0-H/2-h/2, size_r};
// Base outer
p = newp;
Point(p) = {x0, y0, z0-H/2, size_R};
Point(p+1) = {x0+R, y0, z0-H/2, size_R};
Point(p+2) = {x0, y0+R, z0-H/2, size_R};
Point(p+3) = {x0-R, y0, z0-H/2, size_R};
Point(p+4) = {x0, y0-R, z0-H/2, size_R};
// Base inner
p = newp;
Point(p) = {x0, y0, z0-H/2, size_r};
Point(p+1) = {x0+r, y0, z0-H/2, size_r};
Point(p+2) = {x0, y0+r, z0-H/2, size_r};
Point(p+3) = {x0-r, y0, z0-H/2, size_r};
Point(p+4) = {x0, y0-r, z0-H/2, size_r};
// Surface
Circle(1) = {4, 1, 3};
Circle(2) = {3, 1, 2};
Circle(3) = {2, 1, 5};
Circle(4) = {5, 1, 4};
Circle(5) = {14, 6, 13};
Circle(6) = {13, 6, 12};
Circle(7) = {12, 6, 15};
Circle(8) = {15, 6, 14};
Circle(9) = {9, 6, 8};
Circle(10) = {8, 6, 7};
Circle(11) = {7, 6, 10};
Circle(12) = {10, 6, 9};
Line Loop(13) = {4, 1, 2, 3};
Plane Surface(14) = {13};
Line Loop(15) = {12, 9, 10, 11};
Line Loop(16) = {8, 5, 6, 7};
Plane Surface(17) = {15, 16};
Line(18) = {15, 5};
Line(19) = {12, 2};
Line(20) = {3, 13};
Line(21) = {4, 14};
Line Loop(22) = {18, -3, -19, 7};
Ruled Surface(23) = {22};
Line Loop(24) = {2, -19, -6, -20};
Ruled Surface(25) = {24};
Line Loop(26) = {5, -20, -1, 21};
Ruled Surface(27) = {26};
Line Loop(28) = {8, -21, -4, -18};
Ruled Surface(29) = {28};
///////////////////////////////////////////////////////////////////////////////
// Mirror on the top
///////////////////////////////////////////////////////////////////////////////
// Joint
p = newp;
Point(p) = {x0, y0, z0+H/2+h/2, size_r};
Point(p+1) = {x0+r, y0, z0+H/2+h/2, size_r};
Point(p+2) = {x0, y0+r, z0+H/2+h/2, size_r};
Point(p+3) = {x0-r, y0, z0+H/2+h/2, size_r};
Point(p+4) = {x0, y0-r, z0+H/2+h/2, size_r};
// Base outer
p = newp;
Point(p) = {x0, y0, z0+H/2, size_R};
Point(p+1) = {x0+R, y0, z0+H/2, size_R};
Point(p+2) = {x0, y0+R, z0+H/2, size_R};
Point(p+3) = {x0-R, y0, z0+H/2, size_R};
Point(p+4) = {x0, y0-R, z0+H/2, size_R};
// Base inner
p = newp;
Point(p) = {x0, y0, z0+H/2, size_r};
Point(p+1) = {x0+r, y0, z0+H/2, size_r};
Point(p+2) = {x0, y0+r, z0+H/2, size_r};
Point(p+3) = {x0-r, y0, z0+H/2, size_r};
Point(p+4) = {x0, y0-r, z0+H/2, size_r};
Circle(30) = {19, 16, 18};
Circle(31) = {18, 16, 17};
Circle(32) = {17, 16, 20};
Circle(33) = {20, 16, 19};
Circle(34) = {29, 21, 28};
Circle(35) = {28, 21, 27};
Circle(36) = {27, 21, 30};
Circle(37) = {30, 21, 29};
Circle(38) = {24, 21, 23};
Circle(39) = {23, 21, 22};
Circle(40) = {22, 21, 25};
Circle(41) = {25, 21, 24};
Line Loop(42) = {30, 31, 32, 33};
Plane Surface(43) = {42};
Line Loop(44) = {41, 38, 39, 40};
Line Loop(45) = {37, 34, 35, 36};
Plane Surface(46) = {44, 45};
Line(47) = {30, 20};
Line(48) = {17, 27};
Line(49) = {18, 28};
Line(50) = {19, 29};
Line Loop(51) = {48, 36, 47, -32};
Ruled Surface(52) = {51};
Line Loop(53) = {35, -48, -31, 49};
Ruled Surface(54) = {53};
Line Loop(55) = {30, 49, -34, -50};
Ruled Surface(56) = {55};
Line Loop(57) = {33, 50, -37, 47};
Ruled Surface(58) = {57};
// Finally the sides
Line(59) = {9, 24};
Line(60) = {10, 25};
Line(61) = {7, 22};
Line(62) = {8, 23};
Line Loop(63) = {12, 59, -41, -60};
Ruled Surface(64) = {63};
Line Loop(65) = {60, -40, -61, 11};
Ruled Surface(66) = {65};
Line Loop(67) = {61, -39, -62, 10};
Ruled Surface(68) = {67};
Line Loop(69) = {62, -38, -59, 9};
Ruled Surface(70) = {69};
// And the volume
Surface Loop(71) = {14, 56, 54, 46, 64, 17, 70, 68, 66, 23, 29, 27, 25, 52, 58, 43};
Volume(72) = {71};
// Mark the volume of the cylinder here. Surfaces will follow
Physical Volume(1) = {72};
Physical Surface(1) = {56, 54, 46, 64, 17, 70, 68, 66, 23, 29, 27, 25, 52, 58};
// All but the first tail
cylinder_bbox[] = {14, 56, 54, 46, 64, 17, 70, 68, 66, 23, 29, 27, 25, 52, 58};
last_volume = 72;
tail = 43;
Physical Surface(n_cylinders+1) = {tail};
For i In {2:n_cylinders}
new_volume[] = Translate {0, 0, H+h} { Duplicata { Volume{last_volume}; } };
last_volume = new_volume[0];
b() = Boundary{ Volume{last_volume}; } ;
// The 'middle' surfaces are marked
cylinder_shell[] = {};
For j In {1:14}
cylinder_shell[] += {b[j]};
EndFor
tail = b[15];
cylinder_bbox[] += cylinder_shell[];
If(i < n_cylinders)
Physical Surface(i+n_cylinders) = {tail};
EndIf
Physical Surface(i) = {cylinder_shell[]};
Physical Volume(i) = {last_volume};
EndFor
Physical Surface(1) += {14};
Physical Surface(n_cylinders) += {tail};
// Finally collect the bounding surfaces of the cylinder
cylinder_bbox[] += {tail};
bbox_surfaces[] = {};
///////////////////////////////////////////////////////////////////////////////
// Bounding box
///////////////////////////////////////////////////////////////////////////////
// Bottom corner
p = newp;
dx = dx + R;
dy = dy + R;
Point(p) = {x0+dx, y0+dy, z0-H/2-h/2-dz, size_b};
Point(p+1) = {x0+dx, y0-dy, z0-H/2-h/2-dz, size_b};
Point(p+2) = {x0-dx, y0-dy, z0-H/2-h/2-dz, size_b};
Point(p+3) = {x0-dx, y0+dy, z0-H/2-h/2-dz, size_b};
// Bottom plane
l = newl;
Line(l) = {p, p+1};
Line(l+1) = {p+1, p+2};
Line(l+2) = {p+2, p+3};
Line(l+3) = {p+3, p};
s = news;
Line Loop(s) = {l, l+1, l+2, l+3};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
// Top corner
P = newp;
up = n_cylinders*(H+h) + dz;
Point(P) = {x0+dx, y0+dy, z0-h/2-H/2+up, size_b};
Point(P+1) = {x0+dx, y0-dy, z0-h/2-H/2+up, size_b};
Point(P+2) = {x0-dx, y0-dy, z0-h/2-H/2+up, size_b};
Point(P+3) = {x0-dx, y0+dy, z0-h/2-H/2+up, size_b};
// Top plane;
L = newl;
Line(L) = {P, P+1};
Line(L+1) = {P+1, P+2};
Line(L+2) = {P+2, P+3};
Line(L+3) = {P+3, P};
s = news;
Line Loop(s) = {L, L+1, L+2, L+3};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
// Side surfaces
ls = newl;
Line(ls) = {p, P};
Line(ls+1) = {p+1, P+1};
Line(ls+2) = {p+2, P+2};
Line(ls+3) = {p+3, P+3};
s = news;
Line Loop(s) = {L, -(ls+1), -l, ls};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
s = news;
Line Loop(s) = {L+1, -(ls+2), -(l+1), (ls+1)};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
s = news;
Line Loop(s) = {L+2, -(ls+3), -(l+2), (ls+2)};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
s = news;
Line Loop(s) = {L+3, -(ls), -(l+3), (ls+3)};
Plane Surface(s+1) = {s};
bbox_surfaces[] += {s+1};
// Outer = bbox - cylinders
v = newv;
Surface Loop(v) = {bbox_surfaces[]};
Surface Loop(v+1) = {cylinder_bbox[]};
Volume(v+2) = {v, v+1};
Physical Volume(0) = {v+2};