forked from patriciogonzalezvivo/thebookofshaders
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ridge.frag
124 lines (103 loc) · 3.33 KB
/
ridge.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// Author: @patriciogv - 2015
// Tittle: Ridge
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
// Some useful functions
vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }
//
// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License :
// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
float snoise(vec2 v) {
// Precompute values for skewed triangular grid
const vec4 C = vec4(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5*(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439);
// 1.0 / 41.0
// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other two corners (x1, x2)
vec2 i1 = vec2(0.0);
i1 = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - i1;
vec2 x2 = x0.xy + C.zz;
// Do some permutations to avoid
// truncation effects in permutation
i = mod289(i);
vec3 p = permute(
permute( i.y + vec3(0.0, i1.y, 1.0))
+ i.x + vec3(0.0, i1.x, 1.0 ));
vec3 m = max(0.5 - vec3(
dot(x0,x0),
dot(x1,x1),
dot(x2,x2)
), 0.0);
m = m*m ;
m = m*m ;
// Gradients:
// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple
// of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a0*a0 + h*h);
m *= 1.79284291400159 - 0.85373472095314 * (a0*a0+h*h);
// Compute final noise value at P
vec3 g = vec3(0.0);
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * vec2(x1.x,x2.x) + h.yz * vec2(x1.y,x2.y);
return 130.0 * dot(m, g);
}
#define OCTAVES 4
// Ridged multifractal
// See "Texturing & Modeling, A Procedural Approach", Chapter 12
float ridge(float h, float offset) {
h = abs(h); // create creases
h = offset - h; // invert so creases are at top
h = h * h; // sharpen creases
return h;
}
float ridgedMF(vec2 p) {
float lacunarity = 2.0;
float gain = 0.5;
float offset = 0.9;
float sum = 0.0;
float freq = 1.0, amp = 0.5;
float prev = 1.0;
for(int i=0; i < OCTAVES; i++) {
float n = ridge(snoise(p*freq), offset);
sum += n*amp;
sum += n*amp*prev; // scale by previous octave
prev = n;
freq *= lacunarity;
amp *= gain;
}
return sum;
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(0.0);
color += ridgedMF(st*3.0);
gl_FragColor = vec4(color,1.0);
}