forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrnn.py
127 lines (99 loc) · 4.81 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Implements the long-short term memory character model.
This version vectorizes over multiple examples, but each string
has a fixed length."""
from __future__ import absolute_import
from __future__ import print_function
from builtins import range
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import grad
from autograd.scipy.misc import logsumexp
from os.path import dirname, join
from autograd.misc.optimizers import adam
### Helper functions #################
def sigmoid(x):
return 0.5*(np.tanh(x) + 1.0) # Output ranges from 0 to 1.
def concat_and_multiply(weights, *args):
cat_state = np.hstack(args + (np.ones((args[0].shape[0], 1)),))
return np.dot(cat_state, weights)
### Define recurrent neural net #######
def create_rnn_params(input_size, state_size, output_size,
param_scale=0.01, rs=npr.RandomState(0)):
return {'init hiddens': rs.randn(1, state_size) * param_scale,
'change': rs.randn(input_size + state_size + 1, state_size) * param_scale,
'predict': rs.randn(state_size + 1, output_size) * param_scale}
def rnn_predict(params, inputs):
def update_rnn(input, hiddens):
return np.tanh(concat_and_multiply(params['change'], input, hiddens))
def hiddens_to_output_probs(hiddens):
output = concat_and_multiply(params['predict'], hiddens)
return output - logsumexp(output, axis=1, keepdims=True) # Normalize log-probs.
num_sequences = inputs.shape[1]
hiddens = np.repeat(params['init hiddens'], num_sequences, axis=0)
output = [hiddens_to_output_probs(hiddens)]
for input in inputs: # Iterate over time steps.
hiddens = update_rnn(input, hiddens)
output.append(hiddens_to_output_probs(hiddens))
return output
def rnn_log_likelihood(params, inputs, targets):
logprobs = rnn_predict(params, inputs)
loglik = 0.0
num_time_steps, num_examples, _ = inputs.shape
for t in range(num_time_steps):
loglik += np.sum(logprobs[t] * targets[t])
return loglik / (num_time_steps * num_examples)
### Dataset setup ##################
def string_to_one_hot(string, maxchar):
"""Converts an ASCII string to a one-of-k encoding."""
ascii = np.array([ord(c) for c in string]).T
return np.array(ascii[:,None] == np.arange(maxchar)[None, :], dtype=int)
def one_hot_to_string(one_hot_matrix):
return "".join([chr(np.argmax(c)) for c in one_hot_matrix])
def build_dataset(filename, sequence_length, alphabet_size, max_lines=-1):
"""Loads a text file, and turns each line into an encoded sequence."""
with open(filename) as f:
content = f.readlines()
content = content[:max_lines]
content = [line for line in content if len(line) > 2] # Remove blank lines
seqs = np.zeros((sequence_length, len(content), alphabet_size))
for ix, line in enumerate(content):
padded_line = (line + " " * sequence_length)[:sequence_length]
seqs[:, ix, :] = string_to_one_hot(padded_line, alphabet_size)
return seqs
if __name__ == '__main__':
num_chars = 128
# Learn to predict our own source code.
text_filename = join(dirname(__file__), 'rnn.py')
train_inputs = build_dataset(text_filename, sequence_length=30,
alphabet_size=num_chars, max_lines=60)
init_params = create_rnn_params(input_size=128, output_size=128,
state_size=40, param_scale=0.01)
def print_training_prediction(weights):
print("Training text Predicted text")
logprobs = np.asarray(rnn_predict(weights, train_inputs))
for t in range(logprobs.shape[1]):
training_text = one_hot_to_string(train_inputs[:,t,:])
predicted_text = one_hot_to_string(logprobs[:,t,:])
print(training_text.replace('\n', ' ') + "|" +
predicted_text.replace('\n', ' '))
def training_loss(params, iter):
return -rnn_log_likelihood(params, train_inputs, train_inputs)
def callback(weights, iter, gradient):
if iter % 10 == 0:
print("Iteration", iter, "Train loss:", training_loss(weights, 0))
print_training_prediction(weights)
# Build gradient of loss function using autograd.
training_loss_grad = grad(training_loss)
print("Training RNN...")
trained_params = adam(training_loss_grad, init_params, step_size=0.1,
num_iters=1000, callback=callback)
print()
print("Generating text from RNN...")
num_letters = 30
for t in range(20):
text = ""
for i in range(num_letters):
seqs = string_to_one_hot(text, num_chars)[:, np.newaxis, :]
logprobs = rnn_predict(trained_params, seqs)[-1].ravel()
text += chr(npr.choice(len(logprobs), p=np.exp(logprobs)))
print(text)