-
Notifications
You must be signed in to change notification settings - Fork 1
/
mp.c
632 lines (576 loc) · 14.7 KB
/
mp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/* mp.c
* 27 Apr 2000
*/
#include <stdio.h>
#include <stdlib.h>
/* atoi() */
#include <limits.h>
/* INT_MAX, INT_MIN */
#include "mp.h"
/*********************/
/*global variables */
/*********************/
long digits = MAX_DIGITS;
long record_digits;
int mptoi(mp a, int *result, int bcomplain)
{
char smp [DIG2DEC(MAX_DIGITS)+2]; /* string to print mp into */
mptoa(a, smp);
*result = atoi(smp);
if (*result == INT_MAX || *result == INT_MIN)
{
if (bcomplain)
{
printf("Warning: Long integer %s ", smp);
printf("overflown, replaced by %d\n", *result);
}
return 1;
}
else
return 0;
}
long readrat(mp Na, mp Da)
/* read a rational or integer and convert to mp with base BASE */
/* returns true if denominator is not one */
{
char in[MAXINPUT],num[MAXINPUT],den[MAXINPUT];
scanf("%s",in);
atoaa(in,num,den); /*convert rational to num/dem strings*/
atomp(num,Na);
if (den[0]=='\0')
{
itomp(1L,Da);
return(FALSE);
}
atomp(den,Da);
return(TRUE);
}
void atomp(char s[], mp a) /*convert string to mp integer*/
{
mp mpone;
long diff,ten,i,sig;
itomp(1L,mpone);
ten=10L;
for (i=0; s[i]==' ' || s[i]=='\n' || s[i]=='\t'; i++);
/*skip white space*/
sig=POS;
if( s[i] == '+' || s[i]=='-' ) /* sign */
sig=(s[i++]=='+') ? POS : NEG;
itomp(0L,a);
while ( s[i] >= '0' && s[i] <= '9')
{ diff=s[i] - '0';
linint(a,ten,mpone,diff);
i++;
}
storesign(a,sig);
} /* end of atomp */
void readmp(mp a) /* read an integer and convert to mp with base BASE */
{
long in;
scanf("%ld",&in);
itomp(in,a);
}
void itomp(long in, mp a) /* convert integer i to multiple precision with base BASE */
{
long i;
a[0]=2; /* initialize to zero */
for(i=1;i<digits;i++) a[i]=0;
if (in < 0 ) {
storesign(a,NEG);
in=in*(-1);
}
i=0;
while (in != 0) {
i++;
a[i]= in-BASE*(in/BASE);
in=in/BASE;
storelength(a,i+1);
}
} /* end of itomp */
void atoaa(char in[], char num[], char den[]) /* convert rational string in to num/den strings*/
{
long i,j;
for(i=0;in[i] != '\0' && in[i] != '/';i++) num[i]=in[i];
num[i]='\0';
den[0]='\0';
if (in[i] == '/')
{
for(j=0;in[j+i+1] != '\0' ;j++) den[j]=in[i+j+1];
den[j]='\0';
}
} /* end of atoaa */
void prat(char name[],mp Nt,mp Dt) /*print the long precision rational Nt/Dt */
{
long i;
printf("%s",name);
if (sign(Nt)==NEG) printf("-");
printf("%u",Nt[length(Nt)-1]);
for (i=length(Nt)-2;i>=1;i--) printf(FORMAT,Nt[i]);
if( !(Dt[0]==2 && Dt[1]==1)) /* rational */
{ printf("/");
if (sign(Dt)==NEG) printf("-");
printf("%u",Dt[length(Dt)-1]);
for (i=length(Dt)-2;i>=1;i--) printf(FORMAT,Dt[i]);
}
printf(" ");
}
/* get rid void pimat(long r,long s,mp Nt,char name[]) */
/* print the long precision integer in row r col s of matrix A */
/* of this {
int i;
if (s==0) printf("%s[%d][%d]=",name,B[r],C[s]);
else printf("[%d]=",C[s]);
if (sign(Nt)==NEG) printf("-");
printf("%u",Nt[length(Nt)-1]);
for (i=length(Nt)-2;i>=1;i--) printf(FORMAT,Nt[i]);
}*/
void pmp(char name[],mp a) /*print the long precision integer a*/
{
long i;
printf("%s",name);
if (sign(a)==NEG) printf("-");
printf("%u",a[length(a)-1]);
for (i=length(a)-2;i>=1;i--) printf(FORMAT,a[i]);
}
int mptoa(mp x, char s[])
/* convert mp integer to string, returning length */
/* s must be sufficiently long to contain result */
{
int i, pos=0;
if (sign(x)==NEG)
pos = sprintf(s, "-");
pos += sprintf(&s[pos], "%u", x[length(x)-1] );
for (i=length(x)-2; i>=1; i--)
pos += sprintf(&s[pos], FORMAT, x[i]);
return pos;
}
/*
* Package of routines for multiple precision arithmetic
*/
/* returns u=gcd(u,v) destroying v
* Euclid's algorithm. Knuth, II, p.320
* modified to avoid copies r=u,u=v,v=r
* Switches to single precision when possible for greater speed
*/
void gcd(mp u, mp v)
{
mp r;
unsigned long ul,vl;
long i;
static unsigned long maxspval=MAXD;
/* Max value for the last digit to guarantee */
/* fitting into a single long integer. */
static long maxsplen;
/* Maximum digits for a number that will fit */
/* into a single long integer. */
static long firstime=TRUE;
if(firstime) /* initialize constants */
{
for (maxsplen = 2; maxspval >= BASE; maxsplen++)
maxspval /= BASE;
firstime=FALSE;
}
if(greater(v,u)) goto bigv;
bigu:
if(zero(v))
return;
if ((i=length(u))<maxsplen || i==maxsplen && u[maxsplen-1]<maxspval)
goto quickfinish;
divint(u,v,r);
normalize(u);
bigv:
if (zero(u))
{
copy(u,v);
return;
}
if ((i=length(v))<maxsplen || i==maxsplen && v[maxsplen-1]<maxspval)
goto quickfinish;
divint (v,u,r);
normalize(v);
goto bigu;
/* Base 10000 only at the moment
* when u and v are small enough, transfer to single precision integers
* and finish with Euclid's algorithm, then transfer back to mp
*/
quickfinish:
ul = vl = 0;
for (i=length(u)-1; i>0; i--)
ul = BASE*ul + u[i];
for (i=length(v)-1; i>0; i--)
vl = BASE*vl+v[i];
if (ul>vl)
goto qv;
qu:
if (vl==0)
{
for (i=1;ul;i++)
{
u[i] = ul % BASE ;
ul = ul / BASE;
}
storelength(u,i);
return;
}
ul %= vl;
qv:
if (ul==0)
{
for (i=1;vl;i++)
{
u[i] = vl % BASE;
vl = vl / BASE;
}
storelength(u,i);
return;
}
vl %= ul;
goto qu;
}
void reduce(mp Na,mp Da) /* reduces Na Da by gcd(Na,Da) */
{
mp Nb,Db,Nc,Dc;
copy(Nb,Na);
copy(Db,Da);
storesign(Nb,POS);
storesign(Db, POS);
copy(Nc,Na);
copy(Dc,Da);
gcd(Nb,Db); /* Nb is the gcd(Na,Da) */
divint(Nc,Nb,Na);
divint(Dc,Nb,Da);
}
void lcm(mp a, mp b)
/* a = least common multiple of a, b; b is preserved */
{
mp u,v;
copy(u,a);
copy(v,b);
gcd(u,v);
divint(a,u,v); /* v=a/u a contains remainder = 0 */
mulint(v,b,a);
} /* end of lcm */
long greater(mp a, mp b) /* tests if a > b and returns (TRUE=POS) */
{
long i;
if(a[0] > b[0]) return(TRUE);
if(a[0] < b[0]) return(FALSE);
for (i=length(a)-1;i>=1;i--)
{
if (a[i] < b[i])
{
if(sign(a) == POS)
return 0 ;
else
return 1 ;
}
if(a[i] > b[i])
{
if(sign(a) == NEG)
return 0 ;
else
return 1 ;
}
}
return 0 ;
}
void copy(mp a, mp b) /* assigns a=b */
{
long i;
for (i=0; i<=length(b); i++)
a[i]=b[i];
}
/* compute a*ka+b*kb --> a
* Handbook of Algorithms and Data Structures P.239
*/
void linint(mp a,long ka,mp b,long kb)
{
long i,la,lb;
la = length(a);
lb = length(b);
for (i=1; i<la; i++)
a[i] *= ka;
if (sign(a) != sign(b))
kb = -kb;
if (lb>la)
{
storelength(a, lb);
for (i=la; i<lb; i++)
a[i]=0;
}
for (i=1; i<lb; i++)
a[i] += kb * b[i];
normalize(a);
} /* end of linint */
void normalize(mp a)
{
long cy,i,la;
la=length(a);
start:
cy = 0;
for (i=1; i<la; i++)
{
cy = (a[i] += cy)/BASE;
a[i] -= cy*BASE;
if(a[i]<0)
{
a[i]+=BASE;
cy--;
}
}
while(cy>0)
{
a[i++]=cy%BASE;
cy/=BASE;
}
if(cy<0)
{
a[la-1]+=cy*BASE;
for (i=1;i<la;i++)
a[i]= -a[i] ;
storesign(a, sign(a)==POS ? NEG : POS );
goto start;
}
while (a[i-1]==0 && i>2)
i--;
if ( i > record_digits)
{
if ( ( record_digits= i ) > digits)
digits_overflow(la);
};
storelength(a,i);
if (i==2 && a[1]==0)
storesign(a,POS);
} /* end of normalize */
void mulint(mp a,mp b,mp c) /* multiply two integers a*b --> c */
/***Handbook of Algorithms and Data Structures, p239 ***/
{long nlength,i,j,la,lb;
/*** b and c may coincide ***/
la=length(a);
lb=length(b);
nlength=la+lb-2;
if(nlength > digits )
digits_overflow(nlength);
for (i=0;i<la-2;i++) c[lb+i]=0;
for (i=lb-1;i>0;i--) {
for(j=2;j<la;j++)
if((c[i+j-1]+=b[i]*a[j]) >
MAXD-(BASE-1)*(BASE-1)-MAXD/BASE){
c[i+j-1] -= (MAXD/BASE)*BASE;
c[i+j] += MAXD/BASE;
}
c[i] = b[i]*a[1];
}
storelength(c,nlength);
storesign(c,sign(a)==sign(b) ? POS : NEG );
normalize(c);
} /***end of mulint ***/
long comprod(mp Na,mp Nb,mp Nc,mp Nd)
/* +1 if Na*Nb > Nc*Nd */
/* -1 if Na*Nb < Nc*Nd */
/* 0 if Na*Nb = Nc*Nd */
{
mp mc,md;
mulint(Na,Nb,mc);
mulint(Nc,Nd,md);
linint(mc,ONE,md,-ONE);
if(positive(mc)) return (1);
if(negative(mc)) return (-1);
return(0);
}
/********************************************************/
/* Divide two multiple precision integers (c=a/b). */
/* a is destroyed and contains the remainder on return. */
/* From Knuth Vol.2 SemiNumerical Algorithms */
/********************************************************/
void divint(mp a, mp b, mp c )
/* c=a/b, a contains remainder on return */
{
long cy, la, lb, lc, d1, s, t, sig;
long i, j, qh;
/* figure out and save sign, do everything with positive numbers*/
sig=sign(a)*sign(b);
la = length(a);
lb = length(b);
lc = la-lb+2;
if ( la<lb )
{
storelength(c,TWO);
storesign(c,POS);
c[1] = 0;
normalize(c);
return;
}
for( i=1; i<lc; i++ ) c[i] = 0;
storelength(c,lc);
storesign(c, (sign(a)==sign(b)) ? POS : NEG );
/******************************/
/* division by a single word: */
/* do it directly */
/******************************/
if( lb==2 ) {
cy = 0;
t = b[1];
for (i=la-1; i>0; i--) {
cy = cy*BASE+a[i];
a[i] = 0;
cy -= (c[i] = cy/t) * t;
}
a[1] = cy;
storesign(a,(cy==0) ? POS : sign(a));
storelength(a,TWO);
/* set sign of c to sig (**mod**) */
storesign(c,sig);
normalize(c);
return;
}
else
{
/* mp's are actually DIGITS+1 in length, so if length of a or b = */
/* DIGITS, there will still be room after normalization. */
/****************************************************/
/* Step D1 - normalize numbers so b > floor(BASE/2) */
d1 = BASE/(b[lb-1] + 1);
if (d1 > 1)
{
cy = 0;
for (i=1;i<la;i++)
{
cy = (a[i]=a[i]*d1+cy)/BASE;
a[i] %= BASE;
}
a[i] = cy;
cy = 0;
for (i=1;i<lb;i++)
{
cy = (b[i]=b[i]*d1+cy)/BASE;
b[i] %= BASE;
}
b[i] = cy;
}
else
{
a[la] = 0; /* if la or lb = DIGITS this won't work */
b[lb] = 0;
}
/*********************************************/
/* Steps D2 & D7 - start and end of the loop */
for (j = 0;j<=la-lb;j++)
{
/*************************************/
/* Step D3 - determine trial divisor */
if (a[la-j] == b[lb-1])
qh = BASE - 1;
else
{
s = (a[la-j]*BASE + a[la-j-1]);
qh = s/b[lb-1];
while (qh*b[lb-2] > (s - qh*b[lb-1])*BASE + a[la-j-2])
qh--;
}
/*******************************************************/
/* Step D4 - divide through using qh as quotient digit */
cy = 0;
for (i=1;i<=lb;i++)
{
s = qh*b[i] + cy;
a[la-j-lb+i] -= s%BASE;
cy = s/BASE;
if (a[la-j-lb+i] < 0)
{
a[la-j-lb+i] += BASE;
cy++;
}
}
/*****************************************************/
/* Step D6 - adjust previous step if qh is 1 too big */
if (cy)
{
qh--;
cy = 0;
for (i=1;i<=lb;i++) /* add a back in */
{
a[la-j-lb+i] += b[i] + cy;
cy = a[la-j-lb+i]/BASE;
a[la-j-lb+i] %= BASE;
}
}
/***********************************************************************/
/* Step D5 - write final value of qh. Saves calculating array indices */
/* to do it here instead of before D6 */
c[la-lb-j+1] = qh;
}
/**********************************************************************/
/* Step D8 - unnormalize a and b to get correct remainder and divisor */
for (i=lc;c[i-1]==0 && i>2;i--); /* strip excess 0's from quotient */
storelength(c,i);
if(i==2 && c[1]==0) storesign(c,POS);
cy = 0;
for (i=lb-1;i>=1;i--)
{
cy = (a[i]+=cy*BASE)%d1;
a[i] /= d1;
}
for (i=la;a[i-1]==0 && i>2;i--); /* strip excess 0's from quotient */
storelength(a,i);
if(i==2 && a[1]==0) storesign(a,POS);
if (cy) printf("divide error");
for (i=lb-1;i>=1;i--)
{
cy = (b[i]+=cy*BASE)%d1;
b[i] /= d1;
}
}
}
/***************************************************************/
/* */
/* End of package for multiple precision arithmetic */
/* */
/***************************************************************/
void digits_overflow()
{
printf("Overflow at digits=%d\n",DIG2DEC(digits));
exit(1);
}
/***************************************************************/
/* */
/* Package of routines for rational arithmetic */
/* (Built on top of package for multiprecision arithmetic */
/* Not currently used, but may be useful */
/***************************************************************/
linrat(Na,Da,ka,Nb,Db,kb,Nc,Dc)
/* computes Nc/Dc = ka*Na/Da +kb* Nb/Db
and reduces answer by gcd(Nc,Dc) */
mp Na,Da,Nb,Db,Nc,Dc;
long ka,kb;
{
mp c;
mulint(Na,Db,Nc);
mulint(Da,Nb,c);
linint(Nc,ka,c,kb); /* Nc = (ka*Na*Db)+(kb*Da*Nb) */
mulint(Da,Db,Dc); /* Dc = Da*Db */
reduce(Nc,Dc);
}
divrat(Na,Da,Nb,Db,Nc,Dc)
/* computes Nc/Dc = (Na/Da) / ( Nb/Db )
and reduces answer by gcd(Nc,Dc) */
mp Na,Da,Nb,Db,Nc,Dc;
{
mulint(Na,Db,Nc);
mulint(Da,Nb,Dc);
reduce(Nc,Dc);
}
mulrat(Na,Da,Nb,Db,Nc,Dc)
/* computes Nc/Dc = Na/Da * Nb/Db
and reduces answer by gcd(Nc,Dc) */
mp Na,Da,Nb,Db,Nc,Dc;
{
mulint(Na,Nb,Nc);
mulint(Da,Db,Dc);
reduce(Nc,Dc);
}
/***************************************************************/
/* */
/* End package of routines for rational arithmetic */
/* */
/***************************************************************/