-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_exp.py
394 lines (322 loc) · 13.8 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""
This file contains functions for performing running fair regression
algorithms and the set of baseline methods.
See end of file to see sample use of running fair regression.
"""
from __future__ import print_function
import functools
import numpy as np
import pandas as pd
import data_parser as parser
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pickle
import eval as evaluate
import solvers as solvers
import exp_grad as fairlearn
print = functools.partial(print, flush=True)
# Global Variables
TEST_SIZE = 0.5 # fraction of observations from each protected group
Theta = np.linspace(0, 1.0, 41)
alpha = (Theta[1] - Theta[0])/2
DATA_SPLIT_SEED = 4
_SMALL = True # small scale dataset for speed and testing
def train_test_split_groups(x, a, y, random_seed=DATA_SPLIT_SEED):
"""Split the input dataset into train and test sets
TODO: Need to make sure both train and test sets have enough
observations from each subgroup
"""
# size of the training data
groups = list(a.unique())
x_train_sets = {}
x_test_sets = {}
y_train_sets = {}
y_test_sets = {}
a_train_sets = {}
a_test_sets = {}
for g in groups:
x_g = x[a == g]
a_g = a[a == g]
y_g = y[a == g]
x_train_sets[g], x_test_sets[g], a_train_sets[g], a_test_sets[g], y_train_sets[g], y_test_sets[g] = train_test_split(x_g, a_g, y_g, test_size=TEST_SIZE, random_state=random_seed)
x_train = pd.concat(x_train_sets.values())
x_test = pd.concat(x_test_sets.values())
y_train = pd.concat(y_train_sets.values())
y_test = pd.concat(y_test_sets.values())
a_train = pd.concat(a_train_sets.values())
a_test = pd.concat(a_test_sets.values())
# resetting the index
x_train.index = range(len(x_train))
y_train.index = range(len(y_train))
a_train.index = range(len(a_train))
x_test.index = range(len(x_test))
y_test.index = range(len(y_test))
a_test.index = range(len(a_test))
return x_train, a_train, y_train, x_test, a_test, y_test
def subsample(x, a, y, size, random_seed=DATA_SPLIT_SEED):
"""
Randomly subsample a smaller dataset of certain size
"""
toss = 1 - size / (len(x))
x1, _, a1, _, y1 ,_ = train_test_split(x, a, y, test_size=toss, random_state=random_seed)
x1.index = range(len(x1))
y1.index = range(len(x1))
a1.index = range(len(x1))
return x1, a1, y1
def fair_train_test(dataset, size, eps_list, learner, constraint="DP",
loss="square", random_seed=DATA_SPLIT_SEED, init_cache=[]):
"""
Input:
- dataset name
- size parameter for data parser
- eps_list: list of epsilons for exp_grad
- learner: the solver for CSC
- constraint: fairness constraint name
- loss: loss function name
- random_seed
Output: Results for
- exp_grad: (eps, loss) for training and test sets
- benchmark method: (eps, loss) for training and test sets
"""
if dataset == 'law_school':
x, a, y = parser.clean_lawschool_full()
elif dataset == 'communities':
x, a, y = parser.clean_communities_full()
elif dataset == 'adult':
x, a, y = parser.clean_adult_full()
else:
raise Exception('DATA SET NOT FOUND!')
if _SMALL:
x, a, y = subsample(x, a, y, size)
x_train, a_train, y_train, x_test, a_test, y_test = train_test_split_groups(x, a, y, random_seed=DATA_SPLIT_SEED)
fair_model = {}
train_evaluation = {}
test_evaluation = {}
for eps in eps_list:
fair_model[eps] = fairlearn.train_FairRegression(x_train,
a_train,
y_train, eps,
Theta,
learner,
constraint,
loss,
init_cache=init_cache)
train_evaluation[eps] = evaluate.evaluate_FairModel(x_train,
a_train,
y_train,
loss,
fair_model[eps]['exp_grad_result'],
Theta)
test_evaluation[eps] = evaluate.evaluate_FairModel(x_test,
a_test,
y_test,
loss,
fair_model[eps]['exp_grad_result'],
Theta)
result = {}
result['dataset'] = dataset
result['learner'] = learner.name
result['loss'] = loss
result['constraint'] = constraint
result['train_eval'] = train_evaluation
result['test_eval'] = test_evaluation
return result
def base_train_test(dataset, size, base_solver, loss="square",
random_seed=DATA_SPLIT_SEED):
"""
Given a baseline method, train and test on a dataset.
Input:
- dataset name
- size parameter for data parser
- base_solver: the solver for baseline benchmark
- loss: loss function name
- random_seed for data splitting
Output: Results for
- baseline output
"""
if dataset == 'law_school':
x, a, y = parser.clean_lawschool_full()
sens_attr = 'race'
elif dataset == 'communities':
x, a, y = parser.clean_communities_full()
sens_attr = 'race'
elif dataset == 'adult':
x, a, y = parser.clean_adult_full()
sens_attr = 'sex'
else:
raise Exception('DATA SET NOT FOUND!')
if _SMALL:
x, a, y = subsample(x, a, y, size)
x_train, a_train, y_train, x_test, a_test, y_test = train_test_split_groups(x, a, y, random_seed=DATA_SPLIT_SEED)
if base_solver.name == "SEO":
# Evaluate SEO method
base_solver.fit(x_train, y_train, sens_attr)
h_base = lambda X: base_solver.predict(X, sens_attr)
else:
base_solver.fit(x_train, y_train)
h_base = lambda X: base_solver.predict(X)
base_train_eval = evaluate.eval_BenchmarkModel(x_train, a_train,
y_train, h_base,
loss)
base_test_eval = evaluate.eval_BenchmarkModel(x_test, a_test,
y_test, h_base,
loss)
result = {}
result['base_train_eval'] = base_train_eval
result['base_test_eval'] = base_test_eval
result['loss'] = loss
result['learner'] = base_solver.name
result['dataset'] = dataset
return result
def square_loss_benchmark(dataset, n):
"""
Run the set of unconstrained methods for square loss
OLS_Base_Learner
RF_Base_Regressor
XGB_Base_Regressor
"""
loss = 'square'
base_solver1 = solvers.OLS_Base_Learner()
base_res1 = base_train_test(dataset, n, base_solver1, loss=loss,
random_seed=DATA_SPLIT_SEED)
base_solver4 = solvers.SEO_Learner()
base_res4 = base_train_test(dataset, n, base_solver4, loss=loss,
random_seed=DATA_SPLIT_SEED)
if _SMALL:
bl = [base_res1, base_res4]
else:
base_solver2 = solvers.RF_Base_Regressor(max_depth=4,
n_estimators=200)
base_res2 = base_train_test(dataset, n, base_solver2,
loss=loss,
random_seed=DATA_SPLIT_SEED)
base_solver3 = solvers.XGB_Base_Regressor(max_depth=4,
n_estimators=200)
base_res3 = base_train_test(dataset, n, base_solver3,
loss=loss,
random_seed=DATA_SPLIT_SEED)
bl = [base_res1, base_res2, base_res3, base_res4]
return bl
def log_loss_benchmark(dataset='adult', size=100):
"""
Run the set of unconstrained methods for logistic loss
LogisticRegression
XGB_Base_Classifier
"""
loss = 'logistic'
base_solver1 = solvers.Logistic_Base_Learner(C=10)
base_res1 = base_train_test(dataset, size, base_solver1, loss=loss,
random_seed=DATA_SPLIT_SEED)
print("Done with Logistic base")
if _SMALL:
bl = [base_res1]
else:
base_solver3 = solvers.XGB_Base_Classifier(max_depth=3,
n_estimators=150,
gamma=2)
base_res3 = base_train_test(dataset, size, base_solver3, loss=loss,
random_seed=DATA_SPLIT_SEED)
print("Done with XGB base")
bl = [base_res1, base_res3]
return bl
def read_result_list(result_list):
"""
Parse the experiment a list of experiment result and print out info
"""
for result in result_list:
learner = result['learner']
dataset = result['dataset']
train_eval = result['train_eval']
test_eval = result['test_eval']
loss = result['loss']
constraint = result['constraint']
learner = result['learner']
dataset = result['dataset']
eps_vals = train_eval.keys()
train_disp_dic = {}
test_disp_dic = {}
train_err_dic = {}
test_err_dic = {}
test_loss_std_dic = {}
test_disp_dev_dic = {}
for eps in eps_vals:
train_disp = train_eval[eps]["DP_disp"]
test_disp = test_eval[eps]["DP_disp"]
train_disp_dic[eps] = train_disp
test_disp_dic[eps] = test_disp
test_loss_std_dic[eps] = test_eval[eps]['loss_std']
test_disp_dev_dic[eps] = test_eval[eps]['disp_std']
if loss == "square":
# taking the RMSE
train_err_dic[eps] = np.sqrt(train_eval[eps]['weighted_loss'])
test_err_dic[eps] = np.sqrt(test_eval[eps]['weighted_loss'])
else:
train_err_dic[eps] = (train_eval[eps]['weighted_loss'])
test_err_dic[eps] = (test_eval[eps]['weighted_loss'])
# taking the pareto frontier
train_disp_list = [train_disp_dic[k] for k in eps_vals]
test_disp_list = [test_disp_dic[k] for k in eps_vals]
train_err_list = [train_err_dic[k] for k in eps_vals]
test_err_list = [test_err_dic[k] for k in eps_vals]
if loss == "square":
show_loss = 'RMSE'
else:
show_loss = loss
info = str('Dataset: '+dataset + '; loss: ' + loss + '; Solver: '+ learner)
print(info)
train_data = {'specified epsilon': list(eps_vals), 'SP disparity':
train_disp_list, show_loss : train_err_list}
train_performance = pd.DataFrame(data=train_data)
test_data = {'specified epsilon': list(eps_vals), 'SP disparity':
test_disp_list, show_loss : test_err_list}
test_performance = pd.DataFrame(data=test_data)
# Print out experiment info.
print('Train set trade-off:')
print(train_performance)
print('Test set trade-off:')
print(test_performance)
# Sample instantiation of running the fair regeression algorithm
eps_list = [0.275, 0.31, 1] # range of specified disparity values
n = 200 # size of the sub-sampled dataset, when the flag SMALL is True
dataset = 'adult' # name of the data set
constraint = "DP" # name of the constraint; so far limited to demographic parity (or statistical parity)
loss = "logistic" # name of the loss function
learner = solvers.LeastSquaresLearner(Theta) # Specify a supervised learning oracle oracle
info = str('Dataset: '+dataset + '; loss: ' + loss + '; eps list: '+str(eps_list)) + '; Solver: '+learner.name
print('Starting experiment. ' + info)
# Run the fair learning algorithm the supervised learning oracle
result = fair_train_test(dataset, n, eps_list, learner,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
read_result_list([result]) # A simple print out for the experiment
# Saving the result list
outfile = open(info+'.pkl','wb')
pickle.dump(result, outfile)
outfile.close()
"""
# Other sample use:
learner1 = solvers.SVM_LP_Learner(off_set=alpha)
result1 = fair_train_test(dataset, n, eps_list, learner1,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
learner2 = solvers.LeastSquaresLearner(Theta)
result2 = fair_train_test(dataset, n, eps_list, learner2,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
learner3 = solvers.RF_Regression_Learner(Theta)
result3 = fair_train_test(dataset, n, eps_list, learner3,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
learner4 = solvers.XGB_Classifier_Learner(Theta)
result4 = fair_train_test(dataset, n, eps_list, learner4,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
learner5 = solvers.LogisticRegressionLearner(Theta)
result5 = fair_train_test(dataset, n, eps_list, learner5,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
learner6 = solvers.XGB_Regression_Learner(Theta)
result6 = fair_train_test(dataset, n, eps_list, learner6,
constraint=constraint, loss=loss,
random_seed=DATA_SPLIT_SEED)
"""