-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlagrange.py
50 lines (40 loc) · 1.17 KB
/
lagrange.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import math
import numpy as np
import matplotlib.pyplot as plt
def lagrange_polynomial(nodes,f):
"""
Calculates the Lagrange polynomial through the given nodes
Parameters:
nodes - Points to define the Lagrange polynomial with
f - The function to create the polynomial for
Returns value:
P - The Lagrange polynomial
"""
y = f(nodes)
def P(x):
output = 0
for i in range(0,len(nodes)):
# Calculate the polynomial that goes through (node[i],y[i]) and 0 through the other nodes
poly = y[i]
for j in range(0,len(nodes)):
if j == i:
continue
poly *= (x-nodes[j]) / (nodes[i]-nodes[j])
output += poly
return output
return P
# Runge's function, 1/(x^2+1)
def f(x):
return 1 / (x**2 + 1)
# nodes = np.arange(start=-5,stop=6,step=1)
nodes = np.array( [5*math.cos(k*math.pi/10) for k in range(0,11)] )
P = lagrange_polynomial(nodes,f)
x = np.linspace(-5,5,num=100)
fx = f(x)
Px = P(x)
fig, ax = plt.subplots()
ax.set_xlim(left=-5,right=5)
ax.set_ylim(bottom=0,top=1.5)
ax.plot(x,fx)
ax.plot(x,Px)
plt.show()