-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1420 lines (1157 loc) · 36.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy
import math
import pylab
import random
import noise
from queue import *
import sys
from euclid import *
def char_times(c, x):
rv = ''
for i in range(x):
rv += c
return rv
def add2(a,b):
return (a[0]+b[0], a[1]+b[1])
def unordered_equal(t0, t1):
return (t0[0] == t1[0] and t0[1] == t1[1]) or (t0[0] == t1[1] and t0[1] == t1[0])
def clamp_magnitude(x, maxmag):
assert maxmag >= 0
return min( maxmag, max(x, -maxmag))
class IntMatrix2:
def __init__(self, elems):
""" elems should be row-major list of elements, ie. (e_00, e_01, e_10, e_11) """
self.elems = elems
def transform(m, u):
return Int2(
m.elems[0] * u.x + m.elems[1] * u.y,
m.elems[2] * u.x + m.elems[3] * u.y)
@staticmethod
def new_rotation(rads):
elems = [
int(math.cos(rads)), int(-1*math.sin(rads)),
int(math.sin(rads)), int(math.cos(rads))
]
return IntMatrix2(elems)
@staticmethod
def new_scale(s):
elems = [
s, 0.0,
0.0, s
]
return IntMatrix2(elems)
INT2_CCW_QUARTER_ROT_MATRICES = [ IntMatrix2.new_rotation(math.pi/2*i) for i in range(4) ]
VECTOR2_CCW_QUARTER_ROT_MATRICES = [ Matrix3.new_rotate(math.pi/2*i) for i in range(4) ]
class Int2:
x = 0
y = 0
def __init__(self, _x, _y):
assert isinstance(_x, int)
assert isinstance(_y, int)
self.x = _x
self.y = _y
def to_float(s):
return Vector2(s.x, s.y)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __ne__(self, other):
return not self == other
def __cmp__(self, other):
""" lexographic compare """
if self.x < other.x: return -1
elif self.x > other.x: return 1
elif self.y < other.y: return -1
elif self.y > other.y: return 1
else: return 0
def all_lt(self, other):
""" true if all components of self are less-than components of other """
return self.x < other.x and self.y < other.y
def all_gt(self, other):
""" true if all components of self are greater-than components of other """
return self.x > other.x and self.y > other.y
def all_lte(self, other):
return self.x <= other.x and self.y <= other.y
def all_gte(self, other):
return self.x >= other.x and self.y >= other.y
def __lt__(self, other):
""" Lexographic compare """
return (self.x, self.y) < (other.x, other.y)
def __gt__(self, other):
""" Lexographic compare """
return (self.x, self.y) > (other.x, other.y)
def __hash__(self):
return hash((self.x,self.y))
def __repr__(self):
return 'Int2(%d,%d)' % (self.x, self.y)
def __str__(self):
return self.__repr__()
def __add__(u,v):
return Int2(u.x+v.x, u.y+v.y)
def __sub__(u,v):
if type(v) == int:
return Int2(u.x-v, u.y-v)
else:
return Int2(u.x-v.x, u.y-v.y)
def __floordiv__(u, s):
assert isinstance(s, int)
return Int2(u.x//s, u.y//s)
def __mul__(u, s):
return Int2(u.x*s, u.y*s)
def scale(u, v):
return Int2(u.x * v.x, u.y * v.y)
def with_y(u, y):
return Int2(u.x, y)
def with_x(u, x):
return Int2(x, u.y)
def abs(u):
return Int2(abs(u.x), abs(u.y))
def dot(u,v):
return u.x*v.x + u.y*v.y
def is_zero(u):
return u.x == 0 and u.y == 0
def __getitem__(u, index):
if index >= 2:
raise ValueError('Only index values of 0 and 1 are supported by Int2. Index given: %d' % index)
if index == 0:
return u.x
else:
return u.y
def yield_4nbors(self):
""" in ccw order """
p = self
for i in range(4):
yield p + EDGE_TO_NORM[i]
def yield_4nbors_rand(self):
""" in random order """
p = self
for i in numpy.random.permutation(4):
yield p + EDGE_TO_NORM[i]
def yield_8nbors(self):
""" in ccw order """
p = self
for i in range(8):
yield Int2(p.x+nbor8dx[i], p.y+nbor8dy[i])
def yield_9square(self):
""" in ccw order """
for nbor in self.yield_8nbors():
yield nbor
yield self
def yield_8nbors_rand(self):
""" in random order """
p = self
for i in numpy.random.permutation(8):
yield Int2(p.x+nbor8dx[i], p.y+nbor8dy[i])
def range(self):
for x in range(self.x):
for y in range(self.y):
yield Int2(x,y)
def astuple(self):
return (self.x, self.y)
def turn(self, turns):
""" CCW 90-degree multiple turn """
return INT2_CCW_QUARTER_ROT_MATRICES[turns].transform(self)
def avg_dist(u, vs):
d = 0.0
for v in vs:
d += Int2.euclidian_dist(u, v)
d /= len(vs)
return d
def write_ascii(u, st):
st.write('%d\n%d\n' % (u.x, u.y))
def read_ascii(u, st):
u.x = int(st.readline())
u.y = int(st.readline())
@staticmethod
def floor(v2):
return Int2(
int(math.floor(v2.x)),
int(math.floor(v2.y)) )
@staticmethod
def manhattan_dist(u, v):
return abs(v.x - u.x) + abs(v.y - u.y)
@staticmethod
def delta_to_direction(delta):
""" biased towards x """
n = Int2(0,0)
if abs(delta.x) >= abs(delta.y):
n = Int2( clamp_magnitude(delta.x, 1), 0 )
else:
n = Int2( 0, clamp_magnitude(delta.y, 1) )
return NORM_TO_EDGE[n]
@staticmethod
def euclidian_dist(u, v):
dx = v.x - u.x
dy = v.y - u.y
return math.sqrt(dx*dx + dy*dy)
@staticmethod
def centroid(coords):
summ = Int2(0,0)
for c in coords:
summ = summ + c
return summ // len(coords)
@staticmethod
def incrange(a, b):
""" inclusive range """
for x in range(a.x, b.x+1):
for y in range(a.y, b.y+1):
yield Int2(x,y)
@staticmethod
def min(a, b):
""" Component-wise min """
return Int2( min(a.x, b.x), min(a.y, b.y) )
@staticmethod
def max(a, b):
""" Component-wise max """
return Int2( max(a.x, b.x), max(a.y, b.y) )
@staticmethod
def iter_filled_circle(center, radius):
minn = Int2(center.x-radius, center.y-radius)
maxx = Int2(center.x+radius, center.y+radius)
for u in Int2.incrange(minn, maxx):
if Int2.euclidian_dist(u, center) < radius:
yield u
class Grid2:
def __init__(self,_W, _H, default):
self.W = _W
self.H = _H
self.grid = list(range(self.W*self.H))
for i in range(self.W*self.H):
self.grid[i] = default
def __getitem__(G, u):
return G.pget(u)
def __setitem__(G, u, val):
G.pset(u, val)
def check(self,p):
return p.x >= 0 and p.x < self.W and p.y >= 0 and p.y < self.H
def get(self,x,y):
return self.grid[self.W*y + x]
def pget(self,p):
return self.grid[self.W*p.y + p.x]
def set(self,x,y,value):
self.grid[self.W*y+x] = value
def pset(self,p,value):
self.grid[self.W*p.y+p.x] = value
def debug_print(self):
self.printself()
def save_png(G, path):
pylab.figure()
G.show_image()
pylab.savefig(path)
pylab.close()
def printself(self):
# first compute widest string
maxlen = 0
for (u,x) in self.piter():
maxlen = max( len(str(x)), maxlen )
yy = list(range(self.H))
yy.reverse()
for y in yy:
rowstr = ''
for x in range(self.W):
val = self.get(x,y)
rowstr += char_times(' ', maxlen-len(str(val))+1)
rowstr += str(val)
print(rowstr)
def unique_values(self):
vals = set()
for (u,x) in self.piter():
if not x in vals:
vals.add(x)
return vals
def show_image_scalar(self, minval, maxval):
matrix = numpy.ndarray([self.W,self.H])
for (u,val) in self.piter():
matrix[self.H-u.y-1, u.x] = (val-minval)/(maxval-minval)
pylab.imshow(matrix, interpolation='nearest')
# pylab.imshow(matrix)
def show_image(self):
matrix = numpy.ndarray([self.H,self.W])
scalarVal = 0.0
val2scalar = {}
uniques = self.unique_values()
for val in uniques:
val2scalar[val] = scalarVal
scalarVal += 1.0/len(uniques)
for (u,x) in self.piter():
matrix[self.H-u.y-1, u.x] = val2scalar[x]
pylab.imshow(matrix, interpolation='nearest')
# pylab.imshow(matrix)
def iter(self):
for y in range(self.H):
for x in range(self.W):
yield (x,y)
def piter(self):
for y in range(self.H):
for x in range(self.W):
yield (Int2(x,y), self.get(x,y))
def piter_rand(self):
for idx in numpy.random.permutation(self.W * self.H):
y = idx / self.W
x = idx % self.W
yield (Int2(x,y), self.get(x,y))
def nbors4(self, u):
for nbor in u.yield_4nbors():
if self.check(nbor):
yield (nbor, self.pget(nbor))
def nbors8(self, u):
for nbor in u.yield_8nbors():
if self.check(nbor):
yield (nbor, self.pget(nbor))
def nbors4_rand(self, u):
for nbor in u.yield_4nbors_rand():
if self.check(nbor):
yield (nbor, self.pget(nbor))
def touches4(self, u, val):
for (v, q) in self.nbors4(u):
if q == val:
return True
return False
def free_cells_adjacent_to(self, freeval, valueset):
rv = []
for (p,a) in self.piter():
if a != freeval: continue
for (q,b) in self.nbors4(p):
if b in valueset:
rv += [p]
break
return rv
def set_border(self, val):
H = self.H
W = self.W
G = self
for y in range(H):
G.set(0, y, val)
G.set(W-1, y, val)
for x in range(W):
G.set(x, 0, val)
G.set(x, H-1, val)
def cells_with_values(self, valueset):
for (u,p) in self.piter():
if p in valueset:
yield u
def cells_with_value(self, value):
for (p,x) in self.piter():
if x == value:
yield p
def tally(self):
table = {}
for (p,x) in self.piter():
if not x in table:
table[x] = 0
table[x] += 1
return table
def duplicate(self):
rv = Grid2(self.W, self.H, None)
for (p,x) in self.piter():
rv.pset(p,x)
return rv
def connected_components_grid(self, valueFilter):
""" computes connected components, returning (C,S), where C is a grid of cell->component id, and S[componet id] -> num cells in the component """
C = Grid2(self.W, self.H, -1)
def helper(u, cid, value):
count = 0
if C.pget(u) == -1 and self.pget(u) == value:
C.pset(u, cid)
count += 1
for (v,_) in self.nbors4(u):
count += helper(v, cid, value)
return count
compid = 0
compsizes = {}
for (u,value) in self.piter():
if valueFilter and value != valueFilter:
continue
size = helper(u, compid, value)
if size > 0:
compsizes[compid] = size
compid += 1
return (C, compsizes)
def replace(self,q,new):
for (u, value) in self.piter():
if value == q:
self.pset(u, new)
def piter_outside_radius(self, r):
cx = self.W/2.0
cy = self.H/2.0
for (u, value) in self.piter():
dx = u.x+0.5 - cx
dy = u.y+0.5 - cy
if (dx*dx + dy*dy) > r*r:
yield (u, value)
def value_adjacency(G):
rv = {}
# randomize order so we don't bias adjacency locations
for (p,a) in G.piter_rand():
for (q,b) in G.nbors4_rand(p):
if a == b: continue
# strict order
if a > b:
if not (b,a) in rv:
rv[(b,a)] = (q,p)
else:
if not (a,b) in rv:
rv[(a,b)] = (p,q)
return rv
def compute_centroids(G):
value2sum = {}
value2count = {}
for (u,x) in G.piter():
if not x in value2sum:
value2sum[x] = Int2(0,0)
value2sum[x] = value2sum[x] + u
if not x in value2count:
value2count[x] = 0
value2count[x] = value2count[x] + 1
value2cent = {}
for x in value2sum:
s = value2sum[x]
t = value2count[x]
value2cent[x] = (s.x*1.0/t, s.y*1.0/t)
return value2cent
def separate(G, separator_value, exclude_cell):
H = Grid2(G.W, G.H, None)
for (u, p) in G.piter_rand():
H.pset(u, p)
if p == separator_value:
continue
if exclude_cell and exclude_cell(u):
continue
for (v, q) in G.nbors8(u):
if q == separator_value:
continue
elif p == q:
continue
else:
H.pset(u, separator_value)
break
return H
def integer_supersample(G, factor):
S = factor
H = Grid2(G.W*S, G.H*S, None)
for (u, p) in H.piter():
H.pset(u, G.pget(u/S))
return H
def select(G, use_value):
for (u, p) in G.piter():
if use_value(p):
yield (u, p)
def nbor8_values(G, u):
touch_vals = set()
for (v,q) in G.nbors8(u):
touch_vals.add(q)
return touch_vals
def nbor4_values(G, u):
touch_vals = set()
for (v,q) in G.nbors4(u):
touch_vals.add(q)
return touch_vals
def size(s):
return Int2(s.W, s.H)
def floodfill(s, u, freeval, fillval):
assert freeval != fillval
queue = Queue()
queue.put(u)
while not queue.empty():
u = queue.get()
if s.pget(u) != freeval:
# already visited
continue
s.pset(u, fillval)
for (v, q) in s.nbors4(u):
if q == freeval:
queue.put(v)
def bfs(s, start, check_edge, nborcount):
queue = Queue()
visited = Grid2.new_same_size(s, False)
if nborcount == 4:
nborfunc = Grid2.nbors4
else:
nborfunc = Grid2.nbors8
queue.put(start)
visited.pset(start, True)
while not queue.empty():
u = queue.get()
yield u
for (v, q) in nborfunc(s, u):
if not visited.pget(v) and check_edge(u,v):
queue.put(v)
visited.pset(v, True)
def iterborder(s):
for y in range(s.H):
yield Int2(s.W-1, y)
for x in range(s.W):
yield Int2(x, s.H-1)
for y in range(s.H):
yield Int2(0, y)
for x in range(s.W):
yield Int2(x, 0)
def bbox(s, select):
rv = None
for (u, p) in s.piter():
if select(p):
if rv is None:
rv = Bounds2(u, u)
else:
rv = rv.including(u)
return rv
def get_bounds(s):
return Bounds2(
Int2(0,0),
Int2(s.W,s.H) -1 )
def get_center(s):
return s.get_bounds().maxs // 2
@staticmethod
def new_same_size(other, default_val):
g = Grid2(other.W, other.H, default_val)
return g
class GridShape(object):
def __init__(s, G, value):
# compute fronts in all 4 directions
s.G = G
s.value = value
s.dir2front = [[], [], [], []]
for (u, p) in G.piter():
if p != value:
continue
for d in range(4):
front = s.dir2front[d]
v = u + EDGE_TO_NORM[d]
if G.pget(v) != value:
front += [u]
s.centroid = Int2.centroid([u for (u,p) in G.piter() if p == value])
def check_move(s, dirr, is_free):
du = EDGE_TO_NORM[dirr]
return all([s.G.check(u+du) and is_free(s.G[u+du]) for u in s.dir2front[dirr]])
def get_centroid(s):
return s.centroid
def move_towards(s, goal, free_val):
delta = goal - s.get_centroid()
if delta.is_zero():
return False
dirr = Int2.delta_to_direction( goal - s.get_centroid() )
if s.check_move(dirr, lambda x : x == free_val):
s.do_move(dirr, free_val)
return True
else:
return False
def do_move(s, dirr, free_val):
du = EDGE_TO_NORM[dirr]
# only need to move the front and the opposite front
# update all front cells
for u in s.dir2front[dirr]:
s.G[u+du] = s.value
for u in s.dir2front[ EDGE_TO_OPPOSITE[dirr] ]:
s.G[u] = free_val
for d in range(4):
s.dir2front[d] = [u+du for u in s.dir2front[d]]
# update centroid
s.centroid += du
class Bounds2(object):
def __init__(s, mins, maxs):
assert isinstance(mins, Int2)
assert isinstance(maxs, Int2)
s.mins = mins
s.maxs = maxs
def __str__(s):
return '%s->%s' % (s.mins, s.maxs)
def __repr__(s):
return 'Box2(%s, %s)' % (s.mins, s.maxs)
def including(s, u):
return Bounds2( Int2.min(s.mins, u), Int2.max(s.maxs, u) )
def contains(s, u):
""" inclusive """
return s.mins.all_lte(u) and u.all_lte(s.maxs)
def get_size(s):
return s.maxs - s.mins + Int2(1,1)
def get_center(s):
return (s.maxs + s.mins) // 2
def random_inside(s):
return Int2(
random.randint(s.mins.x, s.maxs.x),
random.randint(s.mins.y, s.maxs.y) )
def shrink(s, corner_deltas):
return Bounds2( s.mins + corner_deltas, s.maxs - corner_deltas )
@staticmethod
def from_center_dims(center, dims):
return Bounds2( center-dims//2, center+dims//2 )
EDGE_TO_NORM = [
Int2(1, 0),
Int2(0, 1),
Int2(-1, 0),
Int2(0, -1)
]
EDGE_TO_OPPOSITE = [2, 3, 0, 1]
NORM_TO_EDGE = { EDGE_TO_NORM[edge] : edge for edge in range(4) }
nbor8dx = [1, 1, 0, -1, -1, -1, 0, 1]
nbor8dy = [0, 1, 1, 1, 0, -1, -1, -1]
def vec2_dist(a,b): return (a-b).length
def assign_nearest_center(points, centers):
assignment = range(len(points))
for i in range(len(points)):
p = points[i]
bestj = -1
bestdist = 0.0
for j in range(len(centers)):
dist = vec2_dist(p,centers[j])
if bestj == -1 or dist < bestdist:
bestj = j
bestdist = dist
assignment[i] = bestj
return assignment
def slow_poisson_sampler(mindist, numpoints):
points = []
while len(points) < numpoints:
while True:
p = Vector2(random.random(), random.random())
bad = False
for q in points:
if vec2_dist(p,q) < mindist:
bad = True
break
if not bad:
points += [p]
break
return points
def distance_grid(poss):
N = len(poss)
D = Grid2(N,N, 0.0)
for u in range(N):
for v in range(N):
pu = poss[u]
pv = poss[v]
D.set(u,v, (pu-pv).length)
return D
def gaussian(x, a, b, c):
return a * math.exp(-1 * (x-b)*(x-b)/(2*c*c))
class InterestCurve:
firstBump = 0.5
lastBump = 1.0
def eval(self, frac):
rv = 0
rv += self.firstBump * gaussian(frac-0.1, 0.10)
for center in [ 0.3, 0.5, 0.7]:
rv += (center*0.8) * 1.0 * gaussian(frac-center, 0.075)
rv += 1.0 * gaussian(frac-0.95, 0.1)
return rv
def pick_random(l):
return l[ random.randint(0, len(l)-1) ]
def pick_random_from_set(s):
return pick_random([x for x in s])
class FrontManager:
def __init__(self, grid, freevalue):
self.grid = grid
self.freevalue = freevalue
self.frontcells = None
def recompute(self, invalues):
self.frontcells = set()
for u in self.grid.cells_with_value(self.freevalue):
for (v,y) in self.grid.nbors4(u):
if y in invalues:
self.frontcells.add(u)
break
def on_fill(self, u):
assert self.grid.pget(u) != self.freevalue
if u in self.frontcells:
self.frontcells.remove(u)
for (v,val) in self.grid.nbors4(u):
if val == self.freevalue and v not in self.frontcells:
self.frontcells.add(v)
def on_off_limits(self, u):
""" Like on_fill, but will not expand the front """
if u in self.frontcells:
self.frontcells.remove(u)
def sample(self):
return random.sample(self.frontcells, 1)[0]
def size(self):
return len(self.frontcells)
def check(self):
for u in self.frontcells:
found = False
for (v,y) in self.grid.nbors4(u):
if y != self.freevalue:
found = True
break
assert found
def seed_spread(seedvals, sews, G, freevalue, max_spreads):
seedvalset = set(seedvals)
front = FrontManager(G, freevalue)
front.recompute(seedvalset)
front.check()
def only_touches_values(u, values):
for (v,q) in G.nbors8(u):
if q not in values:
return False
return True
# initial seedings
freespots = [x for x in G.cells_with_value(freevalue)]
random.shuffle(freespots)
for sew in range(sews):
if len(freespots) == 0:
break
for val in seedvals:
if len(freespots) == 0:
print('WARNING: Ran out of free spots before seed sewing')
break
u = freespots.pop()
# make sure this keeps regions separate
while not only_touches_values(u, (freevalue,)):
u = freespots.pop()
G.pset(u, val)
front.on_fill(u)
front.check()
sepvalue = '/'
assert sepvalue not in seedvalset
# spread iteration
spreads = 0
while front.size() > 0 and spreads < max_spreads:
spreads += 1
if spreads % 100 == 0:
print('%d/%d' % (spreads, max_spreads))
# spread
u = front.sample()
# do NOT spread to this if it is separating
touched_regions = set()
for (v, q) in G.nbors8(u):
if q in seedvalset:
touched_regions.add(q)
if len(touched_regions) > 1:
# 'fill' this with a free value, and mark it as filled so no one uses this
G.pset(u, sepvalue)
front.on_off_limits(u)
continue
if len(touched_regions) == 0:
# must be bordering existing border or separator
continue
# ok, but we can only spread to a 4-nbor
for (v, q) in G.nbors4(u):
if q in seedvalset:
G.pset(u, q)
front.on_fill(u)
break
G.replace(sepvalue, freevalue)
return spreads
def eval_subtree_sizes(G, root):
sizes = {}
def recurse(u):
count = 1 # count node itself
for e in G.edges([u]):
recurse(e[1])
count += sizes[e[1]]
sizes[u] = count
recurse(root)
return sizes
def find_ancestor_family(G, leaf, maxsize, sizes):
u = leaf
while True:
parent = get_parent(G, u)
if parent == None:
return u
else:
if sizes[parent] > maxsize:
return u
else:
u = parent
def yield_ancestors(G, start):
u = start
while u:
yield u
u = get_parent(G, u)
def yield_dfs(G, root, stopset):
if stopset and root in stopset:
return
yield root
for e in G.out_edges(root):
v = e[1]
for u in yield_dfs(G,v, stopset):
yield u
def copy_graph_without_subtree(G, root, subroot):
keeps = set()
u = root
for node in yield_dfs(G, root, set([subroot])):
keeps.add(node)
return G.subgraph(keeps)
def get_parent(T, node):
for u in T.in_edges(node):
return u[0]
return None
def pick_max(items, score_func):
best = None
best_score = 0
for item in items:
score = score_func(item)
if best == None or score > best_score:
best = item
best_score = score
return best
def pick_min(items, score_func):
best = None
best_score = 0
for item in items:
score = score_func(item)
if best == None or score < best_score:
best = item
best_score = score
return best
def asc(a,b):
if b < a:
return (b, a)
else:
return (a, b)
def asc2(t):
a = t[0]
b = t[1]
if b < a:
return (b, a)
else:
return (a, b)
TEST_POLYS = [
[
(0,0),
(0.5, 1),
(1,0),
(0,0,)
],
[
(1,0),
(1.5, 1),
(2,0),
(1,0,)
],