-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathserial.rs
1186 lines (1051 loc) · 38.2 KB
/
serial.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Serial module
//!
//! This module support both polling and interrupt based accesses to the serial peripherals.
use core::fmt;
use core::marker::PhantomData;
use core::ops::DerefMut;
use core::ptr;
use core::sync::atomic::{self, Ordering};
use embedded_dma::StaticWriteBuffer;
use stable_deref_trait::StableDeref;
use crate::hal::serial::{self, Write};
use crate::dma::{
dma1, CircBuffer, DMAFrame, FrameReader, FrameSender, Receive, RxDma, TransferPayload,
Transmit, TxDma,
};
use crate::dmamux::{DmaInput, DmaMux};
use crate::gpio::{self, Alternate, OpenDrain, PushPull};
use crate::pac;
use crate::rcc::{Clocks, Enable, RccBus, Reset};
use crate::time::{Bps, U32Ext};
#[cfg(any(
//feature = "stm32l451", // missing PAC support
feature = "stm32l452",
feature = "stm32l462",
// feature = "stm32l471", // missing PAC support
feature = "stm32l475",
feature = "stm32l476",
feature = "stm32l485",
feature = "stm32l486",
feature = "stm32l496",
feature = "stm32l4a6",
// feature = "stm32l4p5",
// feature = "stm32l4q5",
// feature = "stm32l4r5",
// feature = "stm32l4s5",
// feature = "stm32l4r7",
// feature = "stm32l4s7",
feature = "stm32l4r9",
feature = "stm32l4s9",
))]
use crate::dma::dma2;
/// Interrupt event
pub enum Event {
/// New data has been received
Rxne,
/// New data can be sent
Txe,
/// The line has gone idle
Idle,
/// Character match
CharacterMatch,
/// Receiver timeout
ReceiverTimeout,
}
/// Serial error
#[non_exhaustive]
#[derive(Debug)]
pub enum Error {
/// Framing error
Framing,
/// Noise error
Noise,
/// RX buffer overrun
Overrun,
/// Parity check error
Parity,
}
/// USART parity settings
pub enum Parity {
/// No parity
ParityNone,
/// Even parity
ParityEven,
/// Odd parity
ParityOdd,
}
/// USART stopbits settings
pub enum StopBits {
/// 1 stop bit
STOP1,
/// 0.5 stop bits
STOP0P5,
/// 2 stop bits
STOP2,
// 1.5 stop bits
STOP1P5,
}
/// USART oversampling settings
pub enum Oversampling {
/// Oversample 8 times (allows for faster data rates)
Over8,
/// Oversample 16 times (higher stability)
Over16,
}
/// USART Configuration structure
pub struct Config {
baudrate: Bps,
parity: Parity,
stopbits: StopBits,
oversampling: Oversampling,
character_match: Option<u8>,
receiver_timeout: Option<u32>,
disable_overrun: bool,
onebit_sampling: bool,
}
impl Config {
/// Set the baudrate to a specific value
pub fn baudrate(mut self, baudrate: Bps) -> Self {
self.baudrate = baudrate;
self
}
/// Set parity to none
pub fn parity_none(mut self) -> Self {
self.parity = Parity::ParityNone;
self
}
/// Set parity to even
pub fn parity_even(mut self) -> Self {
self.parity = Parity::ParityEven;
self
}
/// Set parity to odd
pub fn parity_odd(mut self) -> Self {
self.parity = Parity::ParityOdd;
self
}
/// Set the number of stopbits
pub fn stopbits(mut self, stopbits: StopBits) -> Self {
self.stopbits = stopbits;
self
}
/// Set the oversampling size
pub fn oversampling(mut self, oversampling: Oversampling) -> Self {
self.oversampling = oversampling;
self
}
/// Set the character match character
pub fn character_match(mut self, character_match: u8) -> Self {
self.character_match = Some(character_match);
self
}
/// Set the receiver timeout, the value is the number of bit durations
///
/// Note that it only takes 24 bits, using more than this will cause a panic.
pub fn receiver_timeout(mut self, receiver_timeout: u32) -> Self {
assert!(receiver_timeout < 1 << 24);
self.receiver_timeout = Some(receiver_timeout);
self
}
/// Disable overrun detection
pub fn with_overrun_disabled(mut self) -> Self {
self.disable_overrun = true;
self
}
/// Change to onebit sampling
pub fn with_onebit_sampling(mut self) -> Self {
self.onebit_sampling = true;
self
}
}
impl Default for Config {
fn default() -> Config {
let baudrate = 115_200_u32.bps();
Config {
baudrate,
parity: Parity::ParityNone,
stopbits: StopBits::STOP1,
oversampling: Oversampling::Over16,
character_match: None,
receiver_timeout: None,
disable_overrun: false,
onebit_sampling: false,
}
}
}
impl From<Bps> for Config {
fn from(baudrate: Bps) -> Config {
Config {
baudrate,
..Default::default()
}
}
}
/// Serial abstraction
pub struct Serial<USART, PINS> {
usart: USART,
pins: PINS,
}
/// Serial receiver
pub struct Rx<USART> {
_usart: PhantomData<USART>,
}
/// Serial transmitter
pub struct Tx<USART> {
_usart: PhantomData<USART>,
}
macro_rules! hal {
($(
$(#[$meta:meta])*
$USARTX:ident: (
$usartX:ident,
$pclkX:ident,
tx: ($txdma:ident, $dmatxch:path, $dmatxsel:path),
rx: ($rxdma:ident, $dmarxch:path, $dmarxsel:path)
),
)+) => {
$(
impl<PINS> Serial<pac::$USARTX, PINS> {
/// Configures the serial interface and creates the interface
/// struct.
///
/// `Config` is a config struct that configures baud rate, stop bits and parity.
///
/// `Clocks` passes information about the current frequencies of
/// the clocks. The existence of the struct ensures that the
/// clock settings are fixed.
///
/// The `serial` struct takes ownership over the `USARTX` device
/// registers and the specified `PINS`
///
/// `MAPR` and `APBX` are register handles which are passed for
/// configuration. (`MAPR` is used to map the USART to the
/// corresponding pins. `APBX` is used to reset the USART.)
pub fn $usartX(
usart: pac::$USARTX,
pins: PINS,
config: impl Into<Config>,
clocks: Clocks,
apb: &mut <pac::$USARTX as RccBus>::Bus,
) -> Self
where
PINS: Pins<pac::$USARTX>,
{
let config = config.into();
// enable or reset $USARTX
<pac::$USARTX>::enable(apb);
<pac::$USARTX>::reset(apb);
// Reset other registers to disable advanced USART features
usart.cr1.reset();
usart.cr2.reset();
usart.cr3.reset();
// Configure baud rate
match config.oversampling {
Oversampling::Over8 => {
let uartdiv = 2 * clocks.$pclkX().raw() / config.baudrate.0;
assert!(uartdiv >= 16, "impossible baud rate");
let lower = (uartdiv & 0xf) >> 1;
let brr = (uartdiv & !0xf) | lower;
usart.cr1.modify(|_, w| w.over8().set_bit());
usart.brr.write(|w| unsafe { w.bits(brr) });
}
Oversampling::Over16 => {
let brr = clocks.$pclkX().raw() / config.baudrate.0;
assert!(brr >= 16, "impossible baud rate");
usart.brr.write(|w| unsafe { w.bits(brr) });
}
}
if let Some(val) = config.receiver_timeout {
usart.rtor.modify(|_, w| w.rto().bits(val));
}
// enable DMA transfers
usart.cr3.modify(|_, w| w.dmat().set_bit().dmar().set_bit());
// Configure hardware flow control (CTS/RTS or RS485 Driver Enable)
if PINS::FLOWCTL {
usart.cr3.modify(|_, w| w.rtse().set_bit().ctse().set_bit());
} else if PINS::DEM {
usart.cr3.modify(|_, w| w.dem().set_bit());
// Pre/post driver enable set conservative to the max time
usart.cr1.modify(|_, w| w.deat().bits(0b1111).dedt().bits(0b1111));
} else {
usart.cr3.modify(|_, w| w.rtse().clear_bit().ctse().clear_bit());
}
// Enable One bit sampling method
usart.cr3.modify(|_, w| {
if config.onebit_sampling {
w.onebit().set_bit();
}
if config.disable_overrun {
w.ovrdis().set_bit();
}
// configure Half Duplex
if PINS::HALF_DUPLEX {
w.hdsel().set_bit();
}
w
});
// Configure parity and word length
// Unlike most uart devices, the "word length" of this usart device refers to
// the size of the data plus the parity bit. I.e. "word length"=8, parity=even
// results in 7 bits of data. Therefore, in order to get 8 bits and one parity
// bit, we need to set the "word" length to 9 when using parity bits.
let (word_length, parity_control_enable, parity) = match config.parity {
Parity::ParityNone => (false, false, false),
Parity::ParityEven => (true, true, false),
Parity::ParityOdd => (true, true, true),
};
usart.cr1.modify(|_r, w| {
w
.m0().bit(word_length)
.ps().bit(parity)
.pce().bit(parity_control_enable)
});
// Configure stop bits
let stop_bits = match config.stopbits {
StopBits::STOP1 => 0b00,
StopBits::STOP0P5 => 0b01,
StopBits::STOP2 => 0b10,
StopBits::STOP1P5 => 0b11,
};
usart.cr2.modify(|_r, w| {
w.stop().bits(stop_bits);
// Setup character match (if requested)
if let Some(c) = config.character_match {
w.add().bits(c);
}
if config.receiver_timeout.is_some() {
w.rtoen().set_bit();
}
w
});
// UE: enable USART
// RE: enable receiver
// TE: enable transceiver
usart
.cr1
.modify(|_, w| w.ue().set_bit().re().set_bit().te().set_bit());
Serial { usart, pins }
}
/// Starts listening for an interrupt event
pub fn listen(&mut self, event: Event) {
match event {
Event::Rxne => {
self.usart.cr1.modify(|_, w| w.rxneie().set_bit())
},
Event::Txe => {
self.usart.cr1.modify(|_, w| w.txeie().set_bit())
},
Event::Idle => {
self.usart.cr1.modify(|_, w| w.idleie().set_bit())
},
Event::CharacterMatch => {
self.usart.cr1.modify(|_, w| w.cmie().set_bit())
},
Event::ReceiverTimeout => {
self.usart.cr1.modify(|_, w| w.rtoie().set_bit())
},
}
}
/// Check for, and return, any errors
///
/// See [`Rx::check_for_error`].
pub fn check_for_error() -> Result<(), Error> {
let mut rx: Rx<pac::$USARTX> = Rx {
_usart: PhantomData,
};
rx.check_for_error()
}
/// Stops listening for an interrupt event
pub fn unlisten(&mut self, event: Event) {
match event {
Event::Rxne => {
self.usart.cr1.modify(|_, w| w.rxneie().clear_bit())
},
Event::Txe => {
self.usart.cr1.modify(|_, w| w.txeie().clear_bit())
},
Event::Idle => {
self.usart.cr1.modify(|_, w| w.idleie().clear_bit())
},
Event::CharacterMatch => {
self.usart.cr1.modify(|_, w| w.cmie().clear_bit())
},
Event::ReceiverTimeout => {
self.usart.cr1.modify(|_, w| w.rtoie().clear_bit())
},
}
}
/// Splits the `Serial` abstraction into a transmitter and a receiver half
pub fn split(self) -> (Tx<pac::$USARTX>, Rx<pac::$USARTX>) {
(
Tx {
_usart: PhantomData,
},
Rx {
_usart: PhantomData,
},
)
}
/// Frees the USART peripheral
pub fn release(self) -> (pac::$USARTX, PINS) {
(self.usart, self.pins)
}
}
impl<PINS> serial::Read<u8> for Serial<pac::$USARTX, PINS> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
let mut rx: Rx<pac::$USARTX> = Rx {
_usart: PhantomData,
};
rx.read()
}
}
impl serial::Read<u8> for Rx<pac::$USARTX> {
type Error = Error;
fn read(&mut self) -> nb::Result<u8, Error> {
self.check_for_error()?;
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*pac::$USARTX::ptr()).isr.read() };
if isr.rxne().bit_is_set() {
// NOTE(read_volatile) see `write_volatile` below
return Ok(unsafe {
ptr::read_volatile(&(*pac::$USARTX::ptr()).rdr as *const _ as *const _)
});
}
Err(nb::Error::WouldBlock)
}
}
impl<PINS> serial::Write<u8> for Serial<pac::$USARTX, PINS> {
type Error = Error;
fn flush(&mut self) -> nb::Result<(), Error> {
let mut tx: Tx<pac::$USARTX> = Tx {
_usart: PhantomData,
};
tx.flush()
}
fn write(&mut self, byte: u8) -> nb::Result<(), Error> {
let mut tx: Tx<pac::$USARTX> = Tx {
_usart: PhantomData,
};
tx.write(byte)
}
}
impl serial::Write<u8> for Tx<pac::$USARTX> {
// NOTE(Void) See section "29.7 USART interrupts"; the only possible errors during
// transmission are: clear to send (which is disabled in this case) errors and
// framing errors (which only occur in SmartCard mode); neither of these apply to
// our hardware configuration
type Error = Error;
fn flush(&mut self) -> nb::Result<(), Error> {
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*pac::$USARTX::ptr()).isr.read() };
if isr.tc().bit_is_set() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
fn write(&mut self, byte: u8) -> nb::Result<(), Error> {
// NOTE(unsafe) atomic read with no side effects
let isr = unsafe { (*pac::$USARTX::ptr()).isr.read() };
if isr.txe().bit_is_set() {
// NOTE(unsafe) atomic write to stateless register
// NOTE(write_volatile) 8-bit write that's not possible through the svd2rust API
unsafe {
ptr::write_volatile(&(*pac::$USARTX::ptr()).tdr as *const _ as *mut _, byte)
}
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl embedded_hal::blocking::serial::write::Default<u8>
for Tx<pac::$USARTX> {}
pub type $rxdma = RxDma<Rx<pac::$USARTX>, $dmarxch>;
pub type $txdma = TxDma<Tx<pac::$USARTX>, $dmatxch>;
impl Receive for $rxdma {
type RxChannel = $dmarxch;
type TransmittedWord = u8;
}
impl Transmit for $txdma {
type TxChannel = $dmatxch;
type ReceivedWord = u8;
}
impl TransferPayload for $rxdma {
fn start(&mut self) {
self.channel.start();
}
fn stop(&mut self) {
self.channel.stop();
}
}
impl TransferPayload for $txdma {
fn start(&mut self) {
self.channel.start();
}
fn stop(&mut self) {
self.channel.stop();
}
}
impl Rx<pac::$USARTX> {
pub fn with_dma(self, channel: $dmarxch) -> $rxdma {
RxDma {
payload: self,
channel,
}
}
/// Check for, and return, any errors
///
/// The `read` methods can only return one error at a time, but
/// there might actually be multiple errors. This method will
/// return and clear a currently active error. Once it returns
/// `Ok(())`, it should be possible to proceed with the next
/// `read` call unimpeded.
pub fn check_for_error(&mut self) -> Result<(), Error> {
// NOTE(unsafe): Only used for atomic access.
let isr = unsafe { (*pac::$USARTX::ptr()).isr.read() };
let icr = unsafe { &(*pac::$USARTX::ptr()).icr };
if isr.pe().bit_is_set() {
icr.write(|w| w.pecf().clear());
return Err(Error::Parity);
}
if isr.fe().bit_is_set() {
icr.write(|w| w.fecf().clear());
return Err(Error::Framing);
}
if isr.nf().bit_is_set() {
icr.write(|w| w.ncf().clear());
return Err(Error::Noise);
}
if isr.ore().bit_is_set() {
icr.write(|w| w.orecf().clear());
return Err(Error::Overrun);
}
Ok(())
}
/// Checks to see if the USART peripheral has detected an idle line and clears
/// the flag
pub fn is_idle(&mut self, clear: bool) -> bool {
let isr = unsafe { &(*pac::$USARTX::ptr()).isr.read() };
let icr = unsafe { &(*pac::$USARTX::ptr()).icr };
if isr.idle().bit_is_set() {
if clear {
icr.write(|w| w.idlecf().set_bit() );
}
true
} else {
false
}
}
/// Checks to see if the USART peripheral has detected an receiver timeout and
/// clears the flag
pub fn is_receiver_timeout(&mut self, clear: bool) -> bool {
let isr = unsafe { &(*pac::$USARTX::ptr()).isr.read() };
let icr = unsafe { &(*pac::$USARTX::ptr()).icr };
if isr.rtof().bit_is_set() {
if clear {
icr.write(|w| w.rtocf().set_bit() );
}
true
} else {
false
}
}
/// Checks to see if the USART peripheral has detected an character match and
/// clears the flag
pub fn check_character_match(&mut self, clear: bool) -> bool {
let isr = unsafe { &(*pac::$USARTX::ptr()).isr.read() };
let icr = unsafe { &(*pac::$USARTX::ptr()).icr };
if isr.cmf().bit_is_set() {
if clear {
icr.write(|w| w.cmcf().set_bit() );
}
true
} else {
false
}
}
}
impl crate::dma::CharacterMatch for Rx<pac::$USARTX> {
/// Checks to see if the USART peripheral has detected an character match and
/// clears the flag
fn check_character_match(&mut self, clear: bool) -> bool {
self.check_character_match(clear)
}
}
impl crate::dma::ReceiverTimeout for Rx<pac::$USARTX> {
fn check_receiver_timeout(&mut self, clear: bool) -> bool {
self.is_receiver_timeout(clear)
}
}
impl crate::dma::OperationError<(), Error> for Rx<pac::$USARTX>{
fn check_operation_error(&mut self) -> Result<(), Error> {
self.check_for_error()
}
}
impl Tx<pac::$USARTX> {
pub fn with_dma(self, channel: $dmatxch) -> $txdma {
TxDma {
payload: self,
channel,
}
}
}
impl $rxdma {
pub fn split(mut self) -> (Rx<pac::$USARTX>, $dmarxch) {
self.stop();
let RxDma {payload, channel} = self;
(
payload,
channel
)
}
}
impl $txdma {
pub fn split(mut self) -> (Tx<pac::$USARTX>, $dmatxch) {
self.stop();
let TxDma {payload, channel} = self;
(
payload,
channel,
)
}
}
impl<B> crate::dma::CircReadDma<B, u8> for $rxdma
where
&'static mut B: StaticWriteBuffer<Word = u8>,
B: 'static,
Self: core::marker::Sized,
{
fn circ_read(mut self, mut buffer: &'static mut B,
) -> CircBuffer<B, Self>
{
let (ptr, len) = unsafe { buffer.static_write_buffer() };
self.channel.set_peripheral_address(
unsafe { &(*pac::$USARTX::ptr()).rdr as *const _ as u32 },
false,
);
self.channel.set_memory_address(ptr as u32, true);
self.channel.set_transfer_length(len as u16);
// Tell DMA to request from serial
self.channel.set_request_line($dmarxsel).unwrap();
self.channel.ccr().modify(|_, w| {
w
// memory to memory mode disabled
.mem2mem()
.clear_bit()
// medium channel priority level
.pl()
.medium()
// 8-bit memory size
.msize()
.bits8()
// 8-bit peripheral size
.psize()
.bits8()
// circular mode disabled
.circ()
.set_bit()
// write to memory
.dir()
.clear_bit()
});
// NOTE(compiler_fence) operations on `buffer` should not be reordered after
// the next statement, which starts the DMA transfer
atomic::compiler_fence(Ordering::Release);
self.start();
CircBuffer::new(buffer, self)
}
}
impl $rxdma {
/// Create a frame reader that can either react on the Character match interrupt or
/// Transfer Complete from the DMA.
pub fn frame_reader<BUFFER, const N: usize>(
mut self,
buffer: BUFFER,
) -> FrameReader<BUFFER, Self, N>
where
BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
let usart = unsafe{ &(*pac::$USARTX::ptr()) };
// Setup DMA transfer
let buf = &*buffer;
self.channel.set_peripheral_address(&usart.rdr as *const _ as u32, false);
self.channel.set_memory_address(unsafe { buf.buffer_address_for_dma() } as u32, true);
self.channel.set_transfer_length(buf.max_len() as u16);
// Tell DMA to request from serial
self.channel.set_request_line($dmarxsel).unwrap();
self.channel.ccr().modify(|_, w| {
w
// memory to memory mode disabled
.mem2mem()
.clear_bit()
// medium channel priority level
.pl()
.medium()
// 8-bit memory size
.msize()
.bits8()
// 8-bit peripheral size
.psize()
.bits8()
// Peripheral -> Mem
.dir()
.clear_bit()
});
// NOTE(compiler_fence) operations on `buffer` should not be reordered after
// the next statement, which starts the DMA transfer
atomic::compiler_fence(Ordering::Release);
self.channel.start();
FrameReader::new(buffer, self, usart.cr2.read().add().bits())
}
}
impl $txdma {
/// Creates a new DMA frame sender
pub fn frame_sender<BUFFER, const N: usize>(
mut self,
) -> FrameSender<BUFFER, Self, N>
where
BUFFER: Sized + StableDeref<Target = DMAFrame<N>> + DerefMut + 'static,
{
let usart = unsafe{ &(*pac::$USARTX::ptr()) };
// Setup DMA
self.channel.set_peripheral_address(&usart.tdr as *const _ as u32, false);
// Tell DMA to request from serial
self.channel.set_request_line($dmatxsel).unwrap();
self.channel.ccr().modify(|_, w| unsafe {
w.mem2mem()
.clear_bit()
// 00: Low, 01: Medium, 10: High, 11: Very high
.pl()
.bits(0b01)
// 00: 8-bits, 01: 16-bits, 10: 32-bits, 11: Reserved
.msize()
.bits(0b00)
// 00: 8-bits, 01: 16-bits, 10: 32-bits, 11: Reserved
.psize()
.bits(0b00)
// Mem -> Peripheral
.dir()
.set_bit()
});
FrameSender::new(self)
}
}
)+
}
}
hal! {
USART1: (usart1, pclk2, tx: (TxDma1, dma1::C4, DmaInput::Usart1Tx), rx: (RxDma1, dma1::C5, DmaInput::Usart1Rx)),
USART2: (usart2, pclk1, tx: (TxDma2, dma1::C7, DmaInput::Usart2Tx), rx: (RxDma2, dma1::C6, DmaInput::Usart2Rx)),
}
#[cfg(not(any(feature = "stm32l432", feature = "stm32l442")))]
hal! {
USART3: (usart3, pclk1, tx: (TxDma3, dma1::C2, DmaInput::Usart3Tx), rx: (RxDma3, dma1::C3, DmaInput::Usart3Rx)),
}
#[cfg(any(
// feature = "stm32l451", // missing PAC support
feature = "stm32l452", // missing PAC support
feature = "stm32l462", // missing PAC support
// feature = "stm32l471", // missing PAC support
feature = "stm32l475",
feature = "stm32l476",
feature = "stm32l485",
feature = "stm32l486",
feature = "stm32l496",
feature = "stm32l4a6",
// feature = "stm32l4p5",
// feature = "stm32l4q5",
// feature = "stm32l4r5",
// feature = "stm32l4s5",
// feature = "stm32l4r7",
// feature = "stm32l4s7",
feature = "stm32l4r9",
feature = "stm32l4s9",
))]
hal! {
UART4: (uart4, pclk1, tx: (TxDma4, dma2::C3, DmaInput::Uart4Tx), rx: (RxDma4, dma2::C5, DmaInput::Uart4Rx)),
}
#[cfg(any(
// feature = "stm32l471", // missing PAC support
feature = "stm32l475",
feature = "stm32l476",
feature = "stm32l485",
feature = "stm32l486",
feature = "stm32l496",
feature = "stm32l4a6",
// feature = "stm32l4p5",
// feature = "stm32l4q5",
// feature = "stm32l4r5",
// feature = "stm32l4s5",
// feature = "stm32l4r7",
// feature = "stm32l4s7",
feature = "stm32l4r9",
feature = "stm32l4s9",
))]
hal! {
UART5: (uart5, pclk1, tx: (TxDma5, dma2::C1, DmaInput::Uart5Tx), rx: (RxDma5, dma2::C2, DmaInput::Uart5Rx)),
}
impl<USART, PINS> fmt::Write for Serial<USART, PINS>
where
Serial<USART, PINS>: crate::hal::serial::Write<u8>,
{
fn write_str(&mut self, s: &str) -> fmt::Result {
let _ = s
.as_bytes()
.iter()
.map(|c| nb::block!(self.write(*c)))
.last();
Ok(())
}
}
impl<USART> fmt::Write for Tx<USART>
where
Tx<USART>: crate::hal::serial::Write<u8>,
{
fn write_str(&mut self, s: &str) -> fmt::Result {
let _ = s
.as_bytes()
.iter()
.map(|c| nb::block!(self.write(*c)))
.last();
Ok(())
}
}
/// Marks pins as being as being TX pins for the given USART instance
pub trait TxPin<Instance>: private::SealedTx {}
/// Marks pins as being TX Half Duplex pins for the given USART instance
pub trait TxHalfDuplexPin<Instance>: private::SealedTxHalfDuplex {}
/// Marks pins as being as being RX pins for the given USART instance
pub trait RxPin<Instance>: private::SealedRx {}
/// Marks pins as being as being RTS pins for the given USART instance
pub trait RtsDePin<Instance>: private::SealedRtsDe {}
/// Marks pins as being as being CTS pins for the given USART instance
pub trait CtsPin<Instance>: private::SealedCts {}
macro_rules! impl_pin_traits {
(
$(
$instance:ident: {
$(
$af:literal: {
TX: $($tx:ident),*;
RX: $($rx:ident),*;
RTS_DE: $($rts_de:ident),*;
CTS: $($cts:ident),*;
}
)*
}
)*
) => {
$(
$(
$(
impl private::SealedTx for
gpio::$tx<Alternate<PushPull, $af>> {}
impl TxPin<pac::$instance> for
gpio::$tx<Alternate<PushPull, $af>> {}
)*
$(
impl private::SealedTxHalfDuplex for
gpio::$tx<Alternate<OpenDrain, $af>> {}
impl TxHalfDuplexPin<pac::$instance> for
gpio::$tx<Alternate<OpenDrain, $af>> {}
)*
$(
impl private::SealedRx for
gpio::$rx<Alternate<PushPull, $af>> {}
impl RxPin<pac::$instance> for
gpio::$rx<Alternate<PushPull, $af>> {}
)*
$(
impl private::SealedRtsDe for
gpio::$rts_de<Alternate<PushPull, $af>> {}
impl RtsDePin<pac::$instance> for
gpio::$rts_de<Alternate<PushPull, $af>> {}
)*
$(
impl private::SealedCts for
gpio::$cts<Alternate<PushPull, $af>> {}
impl CtsPin<pac::$instance> for
gpio::$cts<Alternate<PushPull, $af>> {}
)*
)*
)*
};