-
Notifications
You must be signed in to change notification settings - Fork 988
/
Copy pathHardwareTimer.cpp
1780 lines (1650 loc) · 51.2 KB
/
HardwareTimer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2017 Daniel Fekete
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 2019 STMicroelectronics
Modified to support Arduino_Core_STM32
*/
#include "Arduino.h"
#include "HardwareTimer.h"
#if defined(HAL_TIM_MODULE_ENABLED) && !defined(HAL_TIM_MODULE_ONLY)
/* Private Defines */
#define PIN_NOT_USED 0xFF
#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are used as 16b to have generic behavior
/* Private Variables */
timerObj_t *HardwareTimer_Handle[TIMER_NUM] = {NULL};
/**
* @brief HardwareTimer constructor: set default configuration values
* @param Timer instance ex: TIM1, ...
* @retval None
*/
HardwareTimer::HardwareTimer(TIM_TypeDef *instance)
{
uint32_t index = get_timer_index(instance);
if (index == UNKNOWN_TIMER) {
Error_Handler();
}
HardwareTimer_Handle[index] = &_timerObj;
_timerObj.handle.Instance = instance;
_timerObj.handle.Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
_timerObj.handle.hdma[0] = NULL;
_timerObj.handle.hdma[1] = NULL;
_timerObj.handle.hdma[2] = NULL;
_timerObj.handle.hdma[3] = NULL;
_timerObj.handle.hdma[4] = NULL;
_timerObj.handle.hdma[5] = NULL;
_timerObj.handle.hdma[6] = NULL;
_timerObj.handle.Lock = HAL_UNLOCKED;
_timerObj.handle.State = HAL_TIM_STATE_RESET;
_timerObj.__this = (void *)this;
_timerObj.preemptPriority = TIM_IRQ_PRIO;
_timerObj.subPriority = TIM_IRQ_SUBPRIO;
/* Enable timer clock. Even if it is also done in HAL_TIM_Base_MspInit(),
it is done there so that it is possible to write registers right now */
enableTimerClock(&(_timerObj.handle));
// Initialize NULL callbacks
for (int i = 0; i < TIMER_CHANNELS + 1 ; i++) {
callbacks[i] = NULL;
}
// Initialize channel mode and complementary
for (int i = 0; i < TIMER_CHANNELS; i++) {
#if defined(TIM_CCER_CC1NE)
isComplementaryChannel[i] = false;
#endif
_ChannelMode[i] = TIMER_DISABLED;
}
/* Configure timer with some default values */
_timerObj.handle.Init.Prescaler = 0;
_timerObj.handle.Init.Period = MAX_RELOAD;
_timerObj.handle.Init.CounterMode = TIM_COUNTERMODE_UP;
_timerObj.handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
#if defined(TIM_RCR_REP)
_timerObj.handle.Init.RepetitionCounter = 0;
#endif
_timerObj.handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
HAL_TIM_Base_Init(&(_timerObj.handle));
}
/**
* @brief Pause HardwareTimer: stop timer
* @param None
* @retval None
*/
void HardwareTimer::pause()
{
// Disable all IT
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC1);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC2);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC3);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_CC4);
// Disable timer unconditionally
LL_TIM_DisableCounter(_timerObj.handle.Instance);
#if defined(TIM_CHANNEL_STATE_SET_ALL)
/* Starting from G4, new Channel state implementation prevents to restart a channel,
if the channel has not been explicitly be stopped with HAL interface */
TIM_CHANNEL_STATE_SET_ALL(&(_timerObj.handle), HAL_TIM_CHANNEL_STATE_READY);
TIM_CHANNEL_N_STATE_SET_ALL(&(_timerObj.handle), HAL_TIM_CHANNEL_STATE_READY);
#endif
}
/**
* @brief Pause only one channel.
* Timer is still running but channel is disabled (output and interrupt)
* @param Arduino channel [1..4]
* @retval None
*/
void HardwareTimer::pauseChannel(uint32_t channel)
{
int timAssociatedInputChannel;
int LLChannel = getLLChannel(channel);
if (LLChannel == -1) {
Error_Handler();
}
int interrupt = getIT(channel);
if (interrupt == -1) {
Error_Handler();
}
// Disable channel and corresponding interrupt
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), interrupt);
LL_TIM_CC_DisableChannel(_timerObj.handle.Instance, LLChannel);
#if defined(TIM_CHANNEL_STATE_SET)
/* Starting from G4, new Channel state implementation prevents to restart a channel,
if the channel has not been explicitly be stopped with HAL interface */
if (isComplementaryChannel[channel - 1]) {
TIM_CHANNEL_N_STATE_SET(&(_timerObj.handle), getChannel(channel), HAL_TIM_CHANNEL_STATE_READY);
} else {
TIM_CHANNEL_STATE_SET(&(_timerObj.handle), getChannel(channel), HAL_TIM_CHANNEL_STATE_READY);
}
#endif
// In case 2 channels are used, disbale also the 2nd one
if (_ChannelMode[channel - 1] == TIMER_INPUT_FREQ_DUTY_MEASUREMENT) {
// Identify and configure 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), getIT(timAssociatedInputChannel));
LL_TIM_CC_DisableChannel(_timerObj.handle.Instance, getLLChannel(timAssociatedInputChannel));
}
}
/**
* @brief Start or resume HardwareTimer: all channels are resumed, interrupts are enabled if necessary
* @param None
* @retval None
*/
void HardwareTimer::resume(void)
{
// Clear flag and ennable IT
if (callbacks[0]) {
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), TIM_FLAG_UPDATE);
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
// Start timer in Time base mode. Required when there is no channel used but only update interrupt.
HAL_TIM_Base_Start(&(_timerObj.handle));
}
// Resume all channels
resumeChannel(1);
resumeChannel(2);
resumeChannel(3);
resumeChannel(4);
}
/**
* @brief Convert arduino channel into HAL channel
* @param Arduino channel [1..4]
* @retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getChannel(uint32_t channel)
{
uint32_t return_value;
switch (channel) {
case 1:
return_value = TIM_CHANNEL_1;
break;
case 2:
return_value = TIM_CHANNEL_2;
break;
case 3:
return_value = TIM_CHANNEL_3;
break;
case 4:
return_value = TIM_CHANNEL_4;
break;
default:
return_value = -1;
}
return return_value;
}
/**
* @brief Convert arduino channel into LL channel
* @param Arduino channel [1..4]
* @retval LL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getLLChannel(uint32_t channel)
{
uint32_t return_value;
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1]) {
// Complementary channel
switch (channel) {
case 1:
return_value = LL_TIM_CHANNEL_CH1N;
break;
case 2:
return_value = LL_TIM_CHANNEL_CH2N;
break;
case 3:
return_value = LL_TIM_CHANNEL_CH3N;
break;
#if defined(LL_TIM_CHANNEL_CH4N)
case 4:
return_value = LL_TIM_CHANNEL_CH4N;
break;
#endif
default:
return_value = -1;
}
} else
#endif
{
// Regular channel not complementary
switch (channel) {
case 1:
return_value = LL_TIM_CHANNEL_CH1;
break;
case 2:
return_value = LL_TIM_CHANNEL_CH2;
break;
case 3:
return_value = LL_TIM_CHANNEL_CH3;
break;
case 4:
return_value = LL_TIM_CHANNEL_CH4;
break;
default:
return_value = -1;
}
}
return return_value;
}
/**
* @brief Convert arduino channel into HAL Interrupt ID
* @param Arduino channel [1..4]
* @retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getIT(uint32_t channel)
{
uint32_t return_value;
switch (channel) {
case 1:
return_value = TIM_IT_CC1;
break;
case 2:
return_value = TIM_IT_CC2;
break;
case 3:
return_value = TIM_IT_CC3;
break;
case 4:
return_value = TIM_IT_CC4;
break;
default:
return_value = -1;
}
return return_value;
}
/**
* @brief Get input associated channel
* Channel 1 and 2 are associated; channel 3 and 4 are associated
* @param Arduino channel [1..4]
* @retval HAL channel. return -1 if arduino channel is invalid
*/
int HardwareTimer::getAssociatedChannel(uint32_t channel)
{
int timAssociatedInputChannel = -1;
switch (channel) {
case 1:
timAssociatedInputChannel = 2;
break;
case 2:
timAssociatedInputChannel = 1;
break;
case 3:
timAssociatedInputChannel = 4;
break;
case 4:
timAssociatedInputChannel = 3;
break;
default:
break;
}
return timAssociatedInputChannel;
}
/**
* @brief Configure specified channel and resume/start timer
* @param Arduino channel [1..4]
* @retval None
*/
void HardwareTimer::resumeChannel(uint32_t channel)
{
int timChannel = getChannel(channel);
int timAssociatedInputChannel;
if (timChannel == -1) {
Error_Handler();
}
int interrupt = getIT(channel);
if (interrupt == -1) {
Error_Handler();
}
int LLChannel = getLLChannel(channel);
if (LLChannel == -1) {
Error_Handler();
}
// Clear flag and enable IT
if (callbacks[channel]) {
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), interrupt);
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), interrupt);
}
switch (_ChannelMode[channel - 1]) {
case TIMER_OUTPUT_COMPARE_PWM1:
case TIMER_OUTPUT_COMPARE_PWM2: {
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1]) {
HAL_TIMEx_PWMN_Start(&(_timerObj.handle), timChannel);
} else
#endif
{
HAL_TIM_PWM_Start(&(_timerObj.handle), timChannel);
}
}
break;
case TIMER_OUTPUT_COMPARE:
case TIMER_OUTPUT_COMPARE_ACTIVE:
case TIMER_OUTPUT_COMPARE_INACTIVE:
case TIMER_OUTPUT_COMPARE_TOGGLE:
case TIMER_OUTPUT_COMPARE_FORCED_ACTIVE:
case TIMER_OUTPUT_COMPARE_FORCED_INACTIVE: {
#if defined(TIM_CCER_CC1NE)
if (isComplementaryChannel[channel - 1]) {
HAL_TIMEx_OCN_Start(&(_timerObj.handle), timChannel);
} else
#endif
{
HAL_TIM_OC_Start(&(_timerObj.handle), timChannel);
}
}
break;
case TIMER_INPUT_FREQ_DUTY_MEASUREMENT: {
HAL_TIM_IC_Start(&(_timerObj.handle), timChannel);
// Enable 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
LL_TIM_CC_EnableChannel(_timerObj.handle.Instance, getLLChannel(timAssociatedInputChannel));
if (callbacks[channel]) {
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), getIT(timAssociatedInputChannel));
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), getIT(timAssociatedInputChannel));
}
}
break;
case TIMER_INPUT_CAPTURE_RISING:
case TIMER_INPUT_CAPTURE_FALLING:
case TIMER_INPUT_CAPTURE_BOTHEDGE: {
HAL_TIM_IC_Start(&(_timerObj.handle), timChannel);
}
break;
case TIMER_NOT_USED:
default :
break;
}
}
/**
* @brief Retrieve prescaler from hardware register
* @param None
* @retval prescaler factor
*/
uint32_t HardwareTimer::getPrescaleFactor()
{
// Hardware register correspond to prescaler-1. Example PSC register value 0 means divided by 1
return (LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1);
}
/**
* @brief Configure hardwareTimer prescaler
* @param prescaler factor
* @retval None
*/
void HardwareTimer::setPrescaleFactor(uint32_t prescaler)
{
// Hardware register correspond to prescaler-1. Example PSC register value 0 means divided by 1
LL_TIM_SetPrescaler(_timerObj.handle.Instance, prescaler - 1);
}
/**
* @brief Retrieve overflow (rollover) value from hardware register
* @param format of returned value. If ommited default format is Tick
* @retval overflow depending on format value:
* TICK_FORMAT: return number of tick for overflow
* MICROSEC_FORMAT: return number of microsecondes for overflow
* HERTZ_FORMAT: return frequency in hertz for overflow
*/
uint32_t HardwareTimer::getOverflow(TimerFormat_t format)
{
// Hardware register correspond to period count-1. Example ARR register value 9 means period of 10 timer cycle
uint32_t ARR_RegisterValue = LL_TIM_GetAutoReload(_timerObj.handle.Instance);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
switch (format) {
case MICROSEC_FORMAT:
return_value = (uint32_t)(((ARR_RegisterValue + 1) * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / ((ARR_RegisterValue + 1) * Prescalerfactor));
break;
case TICK_FORMAT:
default :
return_value = ARR_RegisterValue + 1;
break;
}
return return_value;
}
/**
* @brief Set overflow (rollover)
*
* Note that by default, the new value will not be applied
* immediately, but become effective at the next update event
* (usually the next timer overflow). See setPreloadEnable()
* for controlling this behaviour.
* @param overflow: depend on format parameter
* @param format of overflow parameter. If ommited default format is Tick
* TICK_FORMAT: overflow is the number of tick for overflow
* MICROSEC_FORMAT: overflow is the number of microsecondes for overflow
* HERTZ_FORMAT: overflow is the frequency in hertz for overflow
* @retval None
*/
void HardwareTimer::setOverflow(uint32_t overflow, TimerFormat_t format)
{
uint32_t ARR_RegisterValue;
uint32_t PeriodTicks;
uint32_t Prescalerfactor;
uint32_t period_cyc;
// Remark: Hardware register correspond to period count-1. Example ARR register value 9 means period of 10 timer cycle
switch (format) {
case MICROSEC_FORMAT:
period_cyc = overflow * (getTimerClkFreq() / 1000000);
Prescalerfactor = (period_cyc / 0x10000) + 1;
LL_TIM_SetPrescaler(_timerObj.handle.Instance, Prescalerfactor - 1);
PeriodTicks = period_cyc / Prescalerfactor;
break;
case HERTZ_FORMAT:
period_cyc = getTimerClkFreq() / overflow;
Prescalerfactor = (period_cyc / 0x10000) + 1;
LL_TIM_SetPrescaler(_timerObj.handle.Instance, Prescalerfactor - 1);
PeriodTicks = period_cyc / Prescalerfactor;
break;
case TICK_FORMAT:
default :
PeriodTicks = overflow;
break;
}
if (PeriodTicks > 0) {
// The register specifies the maximum value, so the period is really one tick longer
ARR_RegisterValue = PeriodTicks - 1;
} else {
// But do not underflow in case a zero period was given somehow.
ARR_RegisterValue = 0;
}
__HAL_TIM_SET_AUTORELOAD(&_timerObj.handle, ARR_RegisterValue);
}
/**
* @brief Retreive timer counter value
* @param format of returned value. If ommited default format is Tick
* @retval overflow depending on format value:
* TICK_FORMAT: return number of tick for counter
* MICROSEC_FORMAT: return number of microsecondes for counter
* HERTZ_FORMAT: return frequency in hertz for counter
*/
uint32_t HardwareTimer::getCount(TimerFormat_t format)
{
uint32_t CNT_RegisterValue = LL_TIM_GetCounter(_timerObj.handle.Instance);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
switch (format) {
case MICROSEC_FORMAT:
return_value = (uint32_t)((CNT_RegisterValue * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / (CNT_RegisterValue * Prescalerfactor));
break;
case TICK_FORMAT:
default :
return_value = CNT_RegisterValue;
break;
}
return return_value;
}
/**
* @brief Set timer counter value
* @param counter: depend on format parameter
* @param format of overflow parameter. If ommited default format is Tick
* TICK_FORMAT: counter is the number of tick
* MICROSEC_FORMAT: counter is the number of microsecondes
* HERTZ_FORMAT: counter is the frequency in hertz
* @retval None
*/
void HardwareTimer::setCount(uint32_t counter, TimerFormat_t format)
{
uint32_t CNT_RegisterValue;
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
switch (format) {
case MICROSEC_FORMAT:
CNT_RegisterValue = ((counter * (getTimerClkFreq() / 1000000)) / Prescalerfactor);
break;
case HERTZ_FORMAT:
CNT_RegisterValue = (uint32_t)(getTimerClkFreq() / (counter * Prescalerfactor));
break;
case TICK_FORMAT:
default :
CNT_RegisterValue = counter;
break;
}
__HAL_TIM_SET_COUNTER(&(_timerObj.handle), CNT_RegisterValue);
}
/**
* @brief Set channel mode
* @param channel: Arduino channel [1..4]
* @param mode: mode configuration for the channel (see TimerModes_t)
* @param pin: Arduino pin number, ex: D1, 1 or PA1
* @retval None
*/
void HardwareTimer::setMode(uint32_t channel, TimerModes_t mode, uint32_t pin)
{
setMode(channel, mode, digitalPinToPinName(pin));
}
/**
* @brief Set channel mode
* @param channel: Arduino channel [1..4]
* @param mode: mode configuration for the channel (see TimerModes_t)
* @param pin: pin name, ex: PB_0
* @retval None
*/
void HardwareTimer::setMode(uint32_t channel, TimerModes_t mode, PinName pin)
{
int timChannel = getChannel(channel);
int timAssociatedInputChannel;
TIM_OC_InitTypeDef channelOC;
TIM_IC_InitTypeDef channelIC;
if (timChannel == -1) {
Error_Handler();
}
// Save channel selected mode to object attribute
_ChannelMode[channel - 1] = mode;
/* Configure some default values. Maybe overwritten later */
channelOC.OCMode = TIMER_NOT_USED;
channelOC.Pulse = __HAL_TIM_GET_COMPARE(&(_timerObj.handle), timChannel); // keep same value already written in hardware <register
channelOC.OCPolarity = TIM_OCPOLARITY_HIGH;
channelOC.OCFastMode = TIM_OCFAST_DISABLE;
#if defined(TIM_CR2_OIS1)
channelOC.OCIdleState = TIM_OCIDLESTATE_RESET;
#endif
#if defined(TIM_CCER_CC1NE)
channelOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#if defined(TIM_CR2_OIS1)
channelOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
#endif
#endif
channelIC.ICPolarity = TIMER_NOT_USED;
channelIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
channelIC.ICPrescaler = TIM_ICPSC_DIV1;
channelIC.ICFilter = 0;
switch (mode) {
case TIMER_DISABLED:
channelOC.OCMode = TIM_OCMODE_TIMING;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE:
channelOC.OCMode = TIM_OCMODE_TIMING;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_ACTIVE:
channelOC.OCMode = TIM_OCMODE_ACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_INACTIVE:
channelOC.OCMode = TIM_OCMODE_INACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_TOGGLE:
channelOC.OCMode = TIM_OCMODE_TOGGLE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_PWM1:
channelOC.OCMode = TIM_OCMODE_PWM1;
HAL_TIM_PWM_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_PWM2:
channelOC.OCMode = TIM_OCMODE_PWM2;
HAL_TIM_PWM_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_FORCED_ACTIVE:
channelOC.OCMode = TIM_OCMODE_FORCED_ACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_OUTPUT_COMPARE_FORCED_INACTIVE:
channelOC.OCMode = TIM_OCMODE_FORCED_INACTIVE;
HAL_TIM_OC_ConfigChannel(&(_timerObj.handle), &channelOC, timChannel);
break;
case TIMER_INPUT_CAPTURE_RISING:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
// channelIC[0].ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_CAPTURE_FALLING:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
// _channelIC[0].ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_CAPTURE_BOTHEDGE:
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
break;
case TIMER_INPUT_FREQ_DUTY_MEASUREMENT:
// Configure 1st channel
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
channelIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, timChannel);
// Identify and configure 2nd associated channel
timAssociatedInputChannel = getAssociatedChannel(channel);
_ChannelMode[timAssociatedInputChannel - 1] = mode;
channelIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
channelIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
HAL_TIM_IC_ConfigChannel(&(_timerObj.handle), &channelIC, getChannel(timAssociatedInputChannel));
break;
default:
break;
}
if (pin != NC) {
if ((int)get_pwm_channel(pin) == timChannel) {
/* Configure PWM GPIO pins */
pinmap_pinout(pin, PinMap_PWM);
#if defined(STM32F1xx)
if ((mode == TIMER_INPUT_CAPTURE_RISING) || (mode == TIMER_INPUT_CAPTURE_FALLING) \
|| (mode == TIMER_INPUT_CAPTURE_BOTHEDGE) || (mode == TIMER_INPUT_FREQ_DUTY_MEASUREMENT)) {
// on F1 family, input alternate function must configure GPIO in input mode
pinMode(pinNametoDigitalPin(pin), INPUT);
}
#endif
} else {
// Pin doesn't match with timer output channels
Error_Handler();
}
#if defined(TIM_CCER_CC1NE)
isComplementaryChannel[channel - 1] = STM_PIN_INVERTED(pinmap_function(pin, PinMap_PWM));
#endif
}
}
/**
* @brief Retrieves channel mode configured
* @param channel: Arduino channel [1..4]
* @retval returns configured mode
*/
TimerModes_t HardwareTimer::getMode(uint32_t channel)
{
if ((1 <= channel) && (channel <= TIMER_CHANNELS)) {
return _ChannelMode[channel - 1];
} else {
return TIMER_DISABLED;
}
}
/**
* @brief Enable or disable preloading for overflow value
* When disabled, changes to the overflow value take effect
* immediately. When enabled (the default), the value takes
* effect only at the next update event (typically the next
* overflow).
*
* Note that the capture/compare register has its own preload
* enable bit, which is independent and enabled in PWM modes
* and disabled otherwise. If you need more control of that
* bit, you can use the HAL functions directly.
* @param value: true to enable preloading, false to disable
* @retval None
*/
void HardwareTimer::setPreloadEnable(bool value)
{
if (value) {
LL_TIM_EnableARRPreload(_timerObj.handle.Instance);
} else {
LL_TIM_DisableARRPreload(_timerObj.handle.Instance);
}
}
/**
* @brief Set channel Capture/Compare register
* @param channel: Arduino channel [1..4]
* @param compare: compare value depending on format
* @param format of compare parameter. If ommited default format is Tick
* TICK_FORMAT: compare is the number of tick
* MICROSEC_FORMAT: compare is the number of microsecondes
* HERTZ_FORMAT: compare is the frequency in hertz
* @retval None
*/
void HardwareTimer::setCaptureCompare(uint32_t channel, uint32_t compare, TimerCompareFormat_t format)
{
int timChannel = getChannel(channel);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t CCR_RegisterValue;
if (timChannel == -1) {
Error_Handler();
}
switch (format) {
case MICROSEC_COMPARE_FORMAT:
CCR_RegisterValue = ((compare * (getTimerClkFreq() / 1000000)) / Prescalerfactor);
break;
case HERTZ_COMPARE_FORMAT:
CCR_RegisterValue = getTimerClkFreq() / (compare * Prescalerfactor);
break;
// As per Reference Manual PWM reach 100% with CCRx value strictly greater than ARR (So ARR+1 in our case)
case PERCENT_COMPARE_FORMAT:
CCR_RegisterValue = ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) + 1) * compare) / 100;
break;
case RESOLUTION_1B_COMPARE_FORMAT:
case RESOLUTION_2B_COMPARE_FORMAT:
case RESOLUTION_3B_COMPARE_FORMAT:
case RESOLUTION_4B_COMPARE_FORMAT:
case RESOLUTION_5B_COMPARE_FORMAT:
case RESOLUTION_6B_COMPARE_FORMAT:
case RESOLUTION_7B_COMPARE_FORMAT:
case RESOLUTION_8B_COMPARE_FORMAT:
case RESOLUTION_9B_COMPARE_FORMAT:
case RESOLUTION_10B_COMPARE_FORMAT:
case RESOLUTION_11B_COMPARE_FORMAT:
case RESOLUTION_12B_COMPARE_FORMAT:
case RESOLUTION_13B_COMPARE_FORMAT:
case RESOLUTION_14B_COMPARE_FORMAT:
case RESOLUTION_15B_COMPARE_FORMAT:
case RESOLUTION_16B_COMPARE_FORMAT:
CCR_RegisterValue = ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) + 1) * compare) / ((1 << format) - 1) ;
break;
case TICK_COMPARE_FORMAT:
default :
CCR_RegisterValue = compare;
break;
}
// Special case when ARR is set to the max value, it is not possible to set CCRx to ARR+1 to reach 100%
// Then set CCRx to max value. PWM is then 1/0xFFFF = 99.998..%
if ((__HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle)) == MAX_RELOAD)
&& (CCR_RegisterValue == MAX_RELOAD + 1)) {
CCR_RegisterValue = MAX_RELOAD;
}
__HAL_TIM_SET_COMPARE(&(_timerObj.handle), timChannel, CCR_RegisterValue);
}
/**
* @brief Retrieve Capture/Compare value
* @param channel: Arduino channel [1..4]
* @param format of return value. If ommited default format is Tick
* TICK_FORMAT: return value is the number of tick for Capture/Compare value
* MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
* HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
* @retval None
*/
uint32_t HardwareTimer::getCaptureCompare(uint32_t channel, TimerCompareFormat_t format)
{
int timChannel = getChannel(channel);
uint32_t CCR_RegisterValue = __HAL_TIM_GET_COMPARE(&(_timerObj.handle), timChannel);
uint32_t Prescalerfactor = LL_TIM_GetPrescaler(_timerObj.handle.Instance) + 1;
uint32_t return_value;
if (timChannel == -1) {
Error_Handler();
}
switch (format) {
case MICROSEC_COMPARE_FORMAT:
return_value = (uint32_t)((CCR_RegisterValue * Prescalerfactor * 1000000.0) / getTimerClkFreq());
break;
case HERTZ_COMPARE_FORMAT:
return_value = (uint32_t)(getTimerClkFreq() / (CCR_RegisterValue * Prescalerfactor));
break;
case PERCENT_COMPARE_FORMAT:
return_value = (CCR_RegisterValue * 100) / __HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle));
break;
case RESOLUTION_1B_COMPARE_FORMAT:
case RESOLUTION_2B_COMPARE_FORMAT:
case RESOLUTION_3B_COMPARE_FORMAT:
case RESOLUTION_4B_COMPARE_FORMAT:
case RESOLUTION_5B_COMPARE_FORMAT:
case RESOLUTION_6B_COMPARE_FORMAT:
case RESOLUTION_7B_COMPARE_FORMAT:
case RESOLUTION_8B_COMPARE_FORMAT:
case RESOLUTION_9B_COMPARE_FORMAT:
case RESOLUTION_10B_COMPARE_FORMAT:
case RESOLUTION_11B_COMPARE_FORMAT:
case RESOLUTION_12B_COMPARE_FORMAT:
case RESOLUTION_13B_COMPARE_FORMAT:
case RESOLUTION_14B_COMPARE_FORMAT:
case RESOLUTION_15B_COMPARE_FORMAT:
case RESOLUTION_16B_COMPARE_FORMAT:
return_value = (CCR_RegisterValue * ((1 << format) - 1)) / __HAL_TIM_GET_AUTORELOAD(&(_timerObj.handle));
break;
case TICK_COMPARE_FORMAT:
default :
return_value = CCR_RegisterValue;
break;
}
return return_value;
}
/**
* @param channel: Arduino channel [1..4]
* @param pin: Arduino pin number, ex D1, 1 or PA1
* @param frequency: PWM frequency expessed in hertz
* @param dutycycle: PWM dutycycle expressed in percentage
* @param format of return value. If ommited default format is Tick
* TICK_FORMAT: return value is the number of tick for Capture/Compare value
* MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
* HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
* @retval None
*/
void HardwareTimer::setPWM(uint32_t channel, uint32_t pin, uint32_t frequency, uint32_t dutycycle, callback_function_t PeriodCallback, callback_function_t CompareCallback)
{
setPWM(channel, digitalPinToPinName(pin), frequency, dutycycle, PeriodCallback, CompareCallback);
}
/**
* @brief All in one function to configure PWM
* @param channel: Arduino channel [1..4]
* @param pin: pin name, ex PB_0
* @param frequency: PWM frequency expessed in hertz
* @param dutycycle: PWM dutycycle expressed in percentage
* @param format of return value. If ommited default format is Tick
* TICK_FORMAT: return value is the number of tick for Capture/Compare value
* MICROSEC_FORMAT: return value is the number of microsecondes for Capture/Compare value
* HERTZ_FORMAT: return value is the frequency in hertz for Capture/Compare value
* @retval None
*/
void HardwareTimer::setPWM(uint32_t channel, PinName pin, uint32_t frequency, uint32_t dutycycle, callback_function_t PeriodCallback, callback_function_t CompareCallback)
{
setMode(channel, TIMER_OUTPUT_COMPARE_PWM1, pin);
setOverflow(frequency, HERTZ_FORMAT);
setCaptureCompare(channel, dutycycle, PERCENT_COMPARE_FORMAT);
if (PeriodCallback) {
attachInterrupt(PeriodCallback);
}
if (CompareCallback) {
attachInterrupt(channel, CompareCallback);
}
resume();
}
/**
* @brief Set the priority of the interrupt
* @note Must be call before resume()
* @param preemptPriority: the pre-emption priority for the IRQn channel
* @param subPriority: the subpriority level for the IRQ channel.
* @retval None
*/
void HardwareTimer::setInterruptPriority(uint32_t preemptPriority, uint32_t subPriority)
{
// Set Update interrupt priority for immediate use
HAL_NVIC_SetPriority(getTimerUpIrq(_timerObj.handle.Instance), preemptPriority, subPriority);
// Set Capture/Compare interrupt priority if timer provides a unique IRQ
if (getTimerCCIrq(_timerObj.handle.Instance) != getTimerUpIrq(_timerObj.handle.Instance)) {
HAL_NVIC_SetPriority(getTimerCCIrq(_timerObj.handle.Instance), preemptPriority, subPriority);
}
// Store priority for use if timer is re-initialized
_timerObj.preemptPriority = preemptPriority;
_timerObj.subPriority = subPriority;
}
/**
* @brief Attach interrupt callback on update (rollover) event
* @param callback: interrupt callback
* @retval None
*/
void HardwareTimer::attachInterrupt(callback_function_t callback)
{
if (callbacks[0]) {
// Callback previously configured : do not clear neither enable IT, it is just a change of callback
callbacks[0] = callback;
} else {
callbacks[0] = callback;
if (callback) {
// Clear flag before enabling IT
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), TIM_FLAG_UPDATE);
// Enable update interrupt only if callback is valid
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE);
}
}
}
/**
* @brief Dettach interrupt callback on update (rollover) event
* @retval None
*/
void HardwareTimer::detachInterrupt()
{
// Disable update interrupt and clear callback
__HAL_TIM_DISABLE_IT(&(_timerObj.handle), TIM_IT_UPDATE); // disables the interrupt call to save cpu cycles for useless context switching
callbacks[0] = NULL;
}
/**
* @brief Attach interrupt callback on Capture/Compare event
* @param channel: Arduino channel [1..4]
* @param callback: interrupt callback
* @retval None
*/
void HardwareTimer::attachInterrupt(uint32_t channel, callback_function_t callback)
{
int interrupt = getIT(channel);
if (interrupt == -1) {
Error_Handler();
}
if ((channel == 0) || (channel > (TIMER_CHANNELS + 1))) {
Error_Handler(); // only channel 1..4 have an interrupt
}
if (callbacks[channel]) {
// Callback previously configured : do not clear neither enable IT, it is just a change of callback
callbacks[channel] = callback;
} else {
callbacks[channel] = callback;
if (callback) {
// Clear flag before enabling IT
__HAL_TIM_CLEAR_FLAG(&(_timerObj.handle), interrupt);
// Enable interrupt corresponding to channel, only if callback is valid
__HAL_TIM_ENABLE_IT(&(_timerObj.handle), interrupt);
}
}
}
/**
* @brief Dettach interrupt callback on Capture/Compare event
* @param channel: Arduino channel [1..4]
* @retval None
*/
void HardwareTimer::detachInterrupt(uint32_t channel)
{
int interrupt = getIT(channel);
if (interrupt == -1) {
Error_Handler();
}
if ((channel == 0) || (channel > (TIMER_CHANNELS + 1))) {