-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
508 lines (409 loc) · 20.3 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import argparse
import concurrent.futures
import sys
import time as cpytime
import os
from os.path import exists, join
from glob import glob
import numpy as np
import pandas as pd
import xarray as xr
import yaml
from scipy import interpolate
from soundings.preprocessing import goesimager, rtmaloader, raploader
class DataHolder(object):
def __init__(self, sonde_time):
self.sonde_time = sonde_time
self.sonde_lon = None
self.sonde_lat = None
self.sonde_file = None
self.sonde_pres = None
self.sonde_tdry = None
self.sonde_dp = None
self.sonde_alt = None
self.sonde_site_id = None
self.nwp_file = None
self.nwp_lon = None
self.nwp_lat = None
self.nwp_pres = None
self.nwp_tdry = None
self.nwp_dp = None
self.nwp_alt = None
self.goes_files = None
self.goes_patches = None
self.goes_patch_lons = None
self.goes_patch_lats = None
self.rtma_files = None
self.rtma_patches = None
self.rtma_patch_lons = None
self.rtma_patch_lats = None
def save(self, processed_dir):
patch_ds = xr.Dataset(data_vars={'sonde_rel_time': (self.sonde_time),
'sonde_file': (self.sonde_file),
'sonde_site_id': (self.sonde_site_id),
'sonde_lon': (self.sonde_lon),
'sonde_lat': (self.sonde_lat),
'sonde_pres': (('profile_dims'), self.sonde_pres),
'sonde_tdry': (('profile_dims'), self.sonde_tdry),
'sonde_dp': (('profile_dims'), self.sonde_dp),
'sonde_alt': (('profile_dims'), self.sonde_alt),
'nwp_file': (self.nwp_file),
'nwp_lon': (self.nwp_lon),
'nwp_lat': (self.nwp_lat),
'nwp_pres': (('nwp_dims'), self.nwp_pres),
'nwp_tdry': (('nwp_dims'), self.nwp_tdry),
'nwp_dp': (('nwp_dims'), self.nwp_dp),
'nwp_alt': (('nwp_dims'), self.nwp_alt),
'goes_files': (('band'), self.goes_files),
'goes_abi': (('band', 'goes_y', 'goes_x'), self.goes_patches),
'goes_lon': (('goes_y', 'goes_x'), self.goes_patch_lons),
'goes_lat': (('goes_y', 'goes_x'), self.goes_patch_lats),
'rtma_files': (('rtma_type'), self.rtma_files),
'rtma_values': (('rtma_type', 'rtma_y', 'rtma_x'), self.rtma_patches),
'rtma_lon': (('rtma_y', 'rtma_x'), self.rtma_patch_lons),
'rtma_lat': (('rtma_y', 'rtma_x'), self.rtma_patch_lats)
},
coords={'goes_y': np.arange(config['goes']['patch_y_length_pixels']),
'goes_x': np.arange(config['goes']['patch_x_length_pixels']),
'band': config['goes']['bands'],
'rtma_y': np.arange(config['rtma']['patch_y_length_pixels']),
'rtma_x': np.arange(config['rtma']['patch_x_length_pixels']),
'rtma_type': config['rtma']['rtma_type'],
'profile_dims': np.arange(config['raob']['profile_dims']),
'nwp_dims': np.arange(config['nwp']['nwp_dims'])})
patch_ds['sonde_pres'].attrs['units'] = 'hectopascals'
patch_ds['sonde_tdry'].attrs['units'] = 'celsius'
patch_ds['sonde_dp'].attrs['units'] = 'celsius'
patch_ds['sonde_alt'].attrs['units'] = 'meters'
patch_ds['goes_abi'].attrs['units'] = 'rad' if config['goes']['bt'] == False else 'bt'
patch_ds['rtma_values'].attrs['units'] = 'LPI: something, LTI: something, LRI: something'
out_file = join(
processed_dir, f"{self.sonde_site_id}_{self.sonde_time.strftime('%Y_%m_%d_%H%M')}.nc")
print(out_file)
if not exists(processed_dir):
os.makedirs(processed_dir)
try:
os.remove(out_file)
except OSError:
pass
patch_ds.to_netcdf(out_file, engine='netcdf4')
patch_ds.close()
def interpolate_to_height_intervals(alt, y, altitude_intervals):
# alititude does not always increase mononically,
# however, assume_sorted if True, x has to be an array of
# monotonically increasing values...
f = interpolate.interp1d(alt, y, assume_sorted=True)
return f(altitude_intervals)
def nwp_querry_sgp(time, locations, dataset):
nwp_file, pres, temp, spec, height, \
lons, lats = extract_nwp_values(time, locations)
set_nwp_profile(nwp_file, pres[0], temp[0], spec[0], height[0],
lons[0], lats[0], dataset)
def extract_nwp_values(time, locations):
try:
rap_timestep = raploader.RAPLoader(config['nwp']['path'], time,
time_range_minutes=config['nwp']['time_range_minutes'])
except FileNotFoundError as fnfe:
raise fnfe
pres, temp, spec, height, \
lons, lats = rap_timestep.extract_rap_profile(locations, config['nwp']['wgrib2'])
return rap_timestep.rap_file, pres, temp, spec, height, lons, lats
def set_nwp_profile(nwp_file, p, t, q, h, lon, lat, dataset):
"""
Set the RAP data by first converting specific humidity to dew point temperature,
then linearly interpolate to the specified dimension.
---
params:
p : np.array
pressure in Pa
t : np.array
temperature in K
q : np.array
specific humidity
h : np.array
height in m
"""
if lon == 999.0 or lat == 999.0:
raise ValueError(f'[NWP] invalid lon {lon} lat {lat}.')
altitude_intervals = np.linspace(h[0], h[0] + config['top_window_boundary'], config['nwp']['nwp_dims'])
t -= 273.15 # convert K to deg C
pres = interpolate_to_height_intervals(h, p/100., altitude_intervals) # convert Pa to hPa
tdry = interpolate_to_height_intervals(h, t, altitude_intervals)
epsilon = 0.622
A = 17.625
B = 243.04 # deg C
C = 610.94 # Pa
# vapor pressure
e = p*q / (epsilon + (1 - epsilon)*q)
if e[0] == 0: # replace first value with eps if zero
e[0] = np.finfo(float).eps
if e.all() == 0: # forward fill values where zero exist
prev = np.arange(len(e))
prev[e == 0] = 0
prev = np.maximum.accumulate(prev)
e = e[prev]
# dewpoint temperature
td = B * np.log(e/C) / (A - np.log(e/C))
td = interpolate_to_height_intervals(h, td, altitude_intervals)
dataset.nwp_file = nwp_file
dataset.nwp_lon = lon
dataset.nwp_lat = lat
dataset.nwp_pres = pres
dataset.nwp_tdry = tdry
dataset.nwp_dp = td
dataset.nwp_alt = altitude_intervals
def set_noaa_profile(xar, path, s, dataset):
def _remove_unsorted_vals(arr):
# assumes that the first value is correct.
mini = arr[0]
is_valid = np.zeros(len(arr), dtype=bool)
for i, v in enumerate(arr[1:]):
if v < mini:
is_valid[i+1] = True
else:
is_valid[i+1] = False
mini = v
arr[is_valid] = np.nan
return arr
numMand = xar.numMand.values[s]
numSigT = xar.numSigT.values[s]
htMan = _remove_unsorted_vals(xar.htMan.values[s, :numMand])
htSigT = _remove_unsorted_vals(xar.htSigT.values[s, :numSigT])
ht = np.concatenate([htMan, htSigT])
p = np.concatenate([xar.prMan.values[s, :numMand], xar.prSigT.values[s, :numSigT]])
t = np.concatenate([xar.tpMan.values[s, :numMand], xar.tpSigT.values[s, :numSigT]])
td = t - np.concatenate([xar.tdMan.values[s, :numMand], xar.tdSigT.values[s, :numSigT]])
ht_nans = np.isnan(ht)
p_nans = np.isnan(p)
t_nans = np.isnan(t)
td_nans = np.isnan(td)
# remove nans
nans = ht_nans | p_nans | t_nans | td_nans
ht = ht[~nans]; p = p[~nans]; t = t[~nans]; td = td[~nans]
# sort by height
order = ht.argsort()
ht = ht[order]; p = p[order]; t = t[order]; td = td[order]
t -= 273.15 # convert K to C
td -= 273.15
if max(ht) < config['top_window_boundary']:
raise ValueError(f"[RAOB] unable to interpolate top boundary layers. " \
f"data has max of {max(ht):.3f} < {config['top_window_boundary']} for defined value.")
altitude_intervals = np.linspace(
ht[0], ht[0] + config['top_window_boundary'], config['raob']['profile_dims'])
dataset.sonde_pres = interpolate_to_height_intervals(ht, p, altitude_intervals)
dataset.sonde_tdry = interpolate_to_height_intervals(ht, t, altitude_intervals)
dataset.sonde_dp = interpolate_to_height_intervals(ht, td, altitude_intervals)
dataset.sonde_alt = altitude_intervals
dataset.sonde_file = path
dataset.sonde_site_id = xar.staName.values[s].decode('UTF-8').strip().lower()
def set_sgp_profile(sonde, path, dataset):
"""
Read NetCDF formatted radiosonde for a specific launch
Inputs:
"""
p = sonde.pres.values
t = sonde.tdry.values
td = sonde.dp.values
alt = sonde.alt.values
alt_s = alt[0]
# remove duplicate values at surface level
start_indx = 0
for i in range(1, len(alt)):
if alt[i] == alt_s:
start_indx = i
else:
break
altitude_intervals = np.linspace(
alt[start_indx], alt[start_indx] + config['top_window_boundary'], config['raob']['profile_dims'])
dataset.sonde_pres = interpolate_to_height_intervals(
alt[start_indx:], p[start_indx:], altitude_intervals)
dataset.sonde_tdry = interpolate_to_height_intervals(
alt[start_indx:], t[start_indx:], altitude_intervals)
dataset.sonde_dp = interpolate_to_height_intervals(
alt[start_indx:], td[start_indx:], altitude_intervals)
dataset.sonde_alt = altitude_intervals
dataset.sonde_file = path
dataset.sonde_site_id = sonde.site_id
def set_rtma_data(time, lon, lat, dataset):
try:
rtma_timestep = rtmaloader.RTMALoader(config['rtma']['path'], time, config['rtma']['rtma_type'],
time_range_minutes=config['rtma']['time_range_minutes'])
except FileNotFoundError as fnfe: # likely missing a file for all bands
raise fnfe
try:
patches, patch_lons, \
patch_lats = rtma_timestep.extract_image_patch(lon, lat, config['rtma']['patch_x_length_pixels'],
config['rtma']['patch_y_length_pixels'])
dataset.rtma_patches = patches[0]
dataset.rtma_patch_lons = patch_lons
dataset.rtma_patch_lats = patch_lats
dataset.rtma_files = np.array(rtma_timestep.rtma_files)
except ValueError as ve: # likely invalid lon/lat
raise ValueError(f'[RTMA] {ve}')
rtma_timestep.close()
def set_goes_data(time, lon, lat, dataset):
try:
goes16_abi_timestep = goesimager.GOES16ABI(config['goes']['path'], time, config['goes']['bands'],
time_range_minutes=config['goes']['time_range_minutes'])
except FileNotFoundError as fnfe: # likely missing a file for all bands
raise fnfe
try:
patches, patch_lons, \
patch_lats = goes16_abi_timestep.extract_image_patch(lon, lat, config['goes']['patch_x_length_pixels'],
config['goes']['patch_y_length_pixels'],
bt=config['goes']['bt'])
dataset.goes_patches = patches[0]
dataset.goes_patch_lons = patch_lons
dataset.goes_patch_lats = patch_lats
dataset.goes_files = np.array(goes16_abi_timestep.channel_files)
except ValueError as ve: # likely invalid lon/lat
raise ValueError(f'[GOES] {ve}')
goes16_abi_timestep.close()
def extract_sgp_information():
"""Process with the SGP radiosondes"""
already_processed = glob(join(config['output_path'], '*'))
with open(config['raob']['valid_sgp_files_path']) as fp:
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as pool:
path = fp.readline().rstrip('\n')
while path:
if str(config['date_regex']) not in path:
path = fp.readline().rstrip('\n')
continue
# arm-sgp / year / file.cdf
sonde = xr.open_dataset(
join(config['raob']['path'], *path.split('/')[-3:]))
dataset = DataHolder(pd.Timestamp(sonde['time'].values[0], unit='s', tz='UTC'))
dataset.sonde_lon = sonde['lon'].values[0]
dataset.sonde_lat = sonde['lat'].values[0]
if f"{config['output_path']}/sgp_{dataset.sonde_time.strftime('%Y_%m_%d_%H%M')}.nc" in already_processed:
path = fp.readline().rstrip('\n')
continue
futures = []
futures.append(pool.submit(set_sgp_profile, sonde, path, dataset))
futures.append(pool.submit(set_goes_data, dataset.sonde_time, dataset.sonde_lon,
dataset.sonde_lat, dataset))
futures.append(pool.submit(set_rtma_data, dataset.sonde_time, dataset.sonde_lon,
dataset.sonde_lat, dataset))
futures.append(pool.submit(nwp_querry_sgp, dataset.sonde_time,
[(dataset.sonde_lon, dataset.sonde_lat)], dataset))
try:
for future in concurrent.futures.as_completed(futures, timeout=20):
try:
_ = future.result()
except Exception as e:
raise e
dataset.save(config['output_path'])
except Exception as e:
print(f"ERROR: {dataset.sonde_site_id} {path.split('/')[-1]}, {e}")
sonde.close()
del dataset
path = fp.readline().rstrip('\n')
def _group_by_times(inds, timestamps):
"""Group radiosondes by release time rounded by day+hour."""
rounded_timestamps = timestamps.round('H')
days = rounded_timestamps.day.values
hours = rounded_timestamps.hour.values
groups = []
for day in np.unique(days):
for hour in np.unique(hours):
group_mask = np.logical_and.reduce([rounded_timestamps.day.values == day,
rounded_timestamps.hour.values == hour])
if group_mask.any():
groups.append(inds[group_mask])
return groups
def _process_station_groups(f, xar, rel_times, group, pool):
# locations are different for each in group
locations = list(zip(xar.staLon.values[group], xar.staLat.values[group]))
# all dates in the group are rounded to the same. grab first.
group_time = pd.Timestamp(rel_times[group[0]], unit='s', tz='UTC')
# start_t = cpytime.time()
try:
nwp_file, pres, temp, spec, height, \
lons, lats = extract_nwp_values(group_time, locations)
except (FileNotFoundError, Exception) as e:
print(f"ERROR: [NWP] {f.split('/')[-1]}, {e}")
return
# print(f'{len(locations)} locations finished in {cpytime.time() - start_t} s')
for i, s in enumerate(group):
time = pd.Timestamp(rel_times[s], unit='s', tz='UTC')
dataset = DataHolder(time)
dataset.sonde_lon = locations[i][0]
dataset.sonde_lat = locations[i][1]
# print(xar.staName.values[s].decode('UTF-8').strip().lower(), dataset.sonde_lon, dataset.sonde_lat)
futures = []
futures.append(pool.submit(set_nwp_profile, nwp_file, pres[i], temp[i], spec[i],
height[i], lons[i], lats[i], dataset))
futures.append(pool.submit(set_noaa_profile, xar, f, s, dataset))
futures.append(pool.submit(set_goes_data, dataset.sonde_time, dataset.sonde_lon,
dataset.sonde_lat, dataset))
futures.append(pool.submit(set_rtma_data, dataset.sonde_time, dataset.sonde_lon,
dataset.sonde_lat, dataset))
try:
for future in concurrent.futures.as_completed(futures, timeout=20):
try:
_ = future.result()
except Exception as e:
raise e
dataset.save(config['output_path'])
except Exception as e:
print(f"ERROR: {dataset.sonde_site_id} {f.split('/')[-1]}, {e}")
del dataset
def extract_noaa_information():
"""Process with the NOAA radiosondes"""
invalid_location_ids = ['9999','adq','akn','anc','ann','bet','bna','brw','cdb',
'fai','ito','jsj','lih','mcg','ome','otz','sle','snp','sya','yak']
already_processed = glob(join(config['output_path'], '*'))
files = glob(join(f"{config['raob']['noaa_mutli_path']}", '*', f"*{config['date_regex']}*"))
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as pool:
for f in files:
print('processing:', f)
try:
xar = xr.open_dataset(f, decode_times=False)
except Exception as e:
print(e)
continue
rel_times = xar.relTime.values
# should the mask look at other values? e.g., top-sfc > 17,000?
mask = np.logical_and(rel_times != 99999, rel_times < 1e+20)
rel_times[~mask] = 0 # avoid `pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime` for invalid dates.
timestamps = pd.to_datetime(rel_times, unit='s')
# filter out already processed files and invalid sites
for i, t in enumerate(timestamps):
site_id = xar.staName.values[i].decode('UTF-8').strip().lower()
output_file = f"{site_id}_{t.strftime('%Y_%m_%d_%H%M')}.nc"
if f"{config['output_path']}/{output_file}" in already_processed or site_id in invalid_location_ids:
mask[i] = False
inds = xar.recNum.values[mask]
timestamps = timestamps[mask]
groups = _group_by_times(inds, timestamps)
# thread this to have all groups be processed at the same time.
for group in groups:
_process_station_groups(f, xar, rel_times, group, pool)
xar.close()
def main(config_path):
global config
np.set_printoptions(threshold=sys.maxsize)
np.set_printoptions(suppress=True)
start_t = cpytime.time()
with open(config_path, 'r') as stream:
try:
config = yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
sys.exit(1)
if config['raob']['valid_sgp_files_path'] is not None:
print('sgp')
extract_sgp_information()
if config['raob']['noaa_mutli_path'] is not None:
print('noaa')
extract_noaa_information()
print(f"runtime: {cpytime.time()-start_t}")
if __name__ == "__main__":
"""
Usage: python -m soundings.preprocessing.preprocess -c ./soundings/preprocessing/config.yaml
"""
parser = argparse.ArgumentParser(description='data preprocessing')
parser.add_argument('-c', '--config', metavar='path', type=str,
required=True, help='the path to config file')
args = parser.parse_args()
main(config_path=args.config)