-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDL.km
4416 lines (4416 loc) · 271 KB
/
DL.km
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"root": {
"data": {
"id": "cpd5frjk61c0",
"created": 1672200027513,
"text": "MainTopic",
"font-family": "sans-serif",
"expandState": "expand",
"hyperlink": "https://gkentei.techblog.jp/archives/13712572.html",
"hyperlinkTitle": "用語集 インデックス"
},
"children": [
{
"data": {
"id": "cpd75pkoay80",
"created": 1672204881805,
"text": "機械学習 ML\n(Machine Learning)",
"font-family": "sans-serif",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/series/14323/",
"hyperlinkTitle": "AI・機械学習の用語辞典"
},
"children": [
{
"data": {
"id": "cpd7kcsun7c0",
"created": 1672206029464,
"text": "教師あり学習\n(supervised learning)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpea0e30s8w0",
"created": 1672314488258,
"text": "サポートベクターマシン SVM\n(Support Vector Machine)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cptnt9rikzs0",
"created": 1673876825195,
"text": "カーネル法 (Kernel method)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cptntch9tmg0",
"created": 1673876831106,
"text": "カーネルトリック (kernel trick)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cptntf5v27s0",
"created": 1673876836947,
"text": "スラック変数 (slack variable)",
"font-family": "sans-serif",
"hyperlink": "https://sudillap.hatenablog.com/entry/2013/04/08/235602",
"hyperlinkTitle": "サポートベクターマシンとは[ソフトマージンサポートベクターマシン]"
},
"children": []
}
]
},
{
"data": {
"id": "cpfs5eowj8w0",
"created": 1672467221338,
"text": "ロジスティック回帰\n(Logistic Regression)",
"font-family": "sans-serif",
"hyperlink": "https://asanoucla.github.io/R33_logistic1.html",
"hyperlinkTitle": ""
},
"children": []
},
{
"data": {
"id": "cpfv7qi5zc00",
"created": 1672475867109,
"text": "k近傍法 k-NN\n(k-nearest neighbor algorithm)",
"font-family": "sans-serif",
"note": "近傍にいる点と同じクラスに分類する\n"
},
"children": []
}
]
},
{
"data": {
"id": "cpd7kh5g5wg0",
"created": 1672206038932,
"text": "教師なし学習\n(unsupervised learning)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpf6a299c7s0",
"created": 1672405521673,
"text": "t-SNE 法\n(t-distribution Stochastic Neighbor Embedding)",
"note": "高次元での距離の遠近を保ったまま、低次元空間で点を配置しなおす\n\nt:t分布\nS:Stochastic(確率的)\nN:Neighbor(隣接)\nE:Embedding(埋め込み)\n",
"font-family": "sans-serif",
"hyperlink": "https://blog.albert2005.co.jp/2015/12/02/tsne/",
"hyperlinkTitle": "t-SNE を用いた次元圧縮方法のご紹介"
},
"children": [
{
"data": {
"id": "cq54vmw7m080",
"created": 1675042128897,
"text": "次元削減\n(Dimensionality Reduction)",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpfs5lwq48g0",
"created": 1672467237048,
"text": "k平均法\n(k-means algorithm)",
"font-family": "sans-serif",
"hyperlink": "https://di-acc2.com/programming/python/4235/",
"hyperlinkTitle": "【AI・機械学習】k平均法(k-menas)によるモデル構築を解説|Python活用の教師なしクラスタリング"
},
"children": []
},
{
"data": {
"id": "cpo7imnni9c0",
"created": 1673323053712,
"text": "ウォード法\n(Ward method)",
"font-family": "sans-serif",
"hyperlink": "https://mathwords.net/wardmethod",
"hyperlinkTitle": "ウォード法によるクラスタリングのやり方"
},
"children": []
},
{
"data": {
"id": "cq6uctmtnq00",
"created": 1675215563462,
"text": "多変量解析\n(multivariate analysis)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpu1hml5eiw0",
"created": 1673915408277,
"text": "多次元尺度構成法 MDS\n(Multi-Dimensional Scaling)",
"font-family": "sans-serif",
"hyperlink": "https://www.business-research-lab.com/220404-3/",
"hyperlinkTitle": "多次元尺度法の基本的な考え方"
},
"children": [
{
"data": {
"id": "cq6tgsik69s0",
"created": 1675213053374,
"text": "対応分析 CA\n(Correspondence Analysis)",
"font-family": "sans-serif",
"hyperlink": "https://www.intage.co.jp/glossary/400/",
"hyperlinkTitle": "コレスポンデンス分析とは"
},
"children": []
}
]
},
{
"data": {
"id": "cpo7rnnubzk0",
"created": 1673323761178,
"text": "主成分分析 PCA\n(Principal Component Analysis)",
"hyperlink": "https://qiita.com/oki_kosuke/items/70c7e0bcd7b534589f69",
"hyperlinkTitle": "【初心者向け】主成分分析(PCA)って一体何をしているの?(理論編)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cq6tgnqibj40",
"created": 1675213042971,
"text": "独立成分分析 ICA\n(independent component analysis)",
"font-family": "sans-serif",
"hyperlink": "https://www.hellocybernetics.tech/entry/2016/05/01/185044",
"hyperlinkTitle": "独立成分分析の基礎と主成分分析との比較"
},
"children": []
}
]
},
{
"data": {
"id": "cq6th08ogaw0",
"created": 1675213070191,
"text": "自己組織化マップ SOM\n(Self-Organizing Map)",
"font-family": "sans-serif",
"note": "Kohonen's self-organizing MAP\nコホーネンの自己組織化マップ\n",
"hyperlink": "http://gaya.jp/spiking_neuron/som.htm",
"hyperlinkTitle": ""
},
"children": []
}
]
},
{
"data": {
"id": "cpd7kku8r8g0",
"created": 1672206046962,
"text": "半教師あり学習\n(Semi-Supervised Learning)",
"font-family": "sans-serif",
"hyperlink": "https://products.sint.co.jp/aisia/blog/vol1-20",
"hyperlinkTitle": ""
},
"children": []
},
{
"data": {
"id": "cpe9jkfxstc0",
"created": 1672313169909,
"text": "分類・回帰",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpf1y4xvqw00",
"created": 1672393302706,
"text": "分類\n(Classify)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpfs5tzxm4o0",
"created": 1672467254656,
"text": "2値分類問題\n(Binary classification)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpqocuhxeu00",
"created": 1673573679377,
"text": "決定境界\n(Decision Boundary)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpd7imlt4280",
"created": 1672205894077,
"text": "混同行列\n(Confusion Matrix)",
"font-family": "sans-serif",
"note": "●真陽性 (TP)\n●真陰性 (TN)\n●偽陽性 (FP)\n●偽陰性 (FN)\n",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2208/08/news034.html",
"hyperlinkTitle": "[評価指標]混同行列(Confusion Matrix)とは?"
},
"children": [
{
"data": {
"id": "cpd83sd9tw80",
"created": 1672207552269,
"text": "正解率 (Accuracy)",
"font-family": "sans-serif",
"note": "(TP+TN)/(TP+TN+FP+FN)"
},
"children": []
},
{
"data": {
"id": "cpd8261lolc0",
"created": 1672207425310,
"text": "適合率 (Precision)",
"font-family": "sans-serif",
"note": "陽性と予測して陽性だった割合\nTP/(TP+FP)"
},
"children": []
},
{
"data": {
"id": "cpd834x7zbc0",
"created": 1672207501233,
"text": "再現率 (Recall)/\n感度 (Sensitivity)",
"note": "陽性であるもののうち、陽性であると予測できた割合\nTP/(TP+FN)\n",
"font-family": "sans-serif",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2209/29/news048.html",
"hyperlinkTitle": "[評価指標]再現率(Recall)/感度(Sensitivity)とは?"
},
"children": []
},
{
"data": {
"id": "cpf4k9bfxxk0",
"created": 1672400678464,
"text": "特異率 (Specificity)",
"font-family": "sans-serif",
"note": "陰性であるもののうち、陰性であると予測できた割合\nTN/(FP+TN)"
},
"children": []
},
{
"data": {
"id": "cpd85t9xgw80",
"created": 1672207710972,
"text": "F1値 (F1 score)",
"note": "適合率と再現率の調和平均\n(2 * 適合率 * 再現率) / (適合率 + 再現率)\n",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpd8mf63snk0",
"created": 1672209012457,
"text": "帰無仮説=差がない\n(null hypothesis)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpd7b486u9c0",
"created": 1672205305522,
"text": "第一種の過誤=偽陽性\n(Type I error)",
"note": "帰無仮説「差がない」が正しいのに、誤って帰無仮説を棄却\n",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpd8mti4ipc0",
"created": 1672209043659,
"text": "対立仮説=差がある\n(alternative hypothesis)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpd7bhqgbeo0",
"created": 1672205334925,
"text": "第二種の過誤=偽陰性\n(Type Ⅱ error)",
"note": "対立仮説「差がある」が正しいのに、帰無仮説を棄却できない\n",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cq11efgmc800",
"created": 1674626077370,
"text": "ROC曲線 ROC curve\n(Receiver Operatorating Characteristic curve)",
"note": "●受信者動作特性曲線\n\n横軸 偽陽性率\n縦軸 敏感度\nでプロット\n",
"font-family": "sans-serif",
"hyperlink": "https://www.cresco.co.jp/blog/entry/15337/",
"hyperlinkTitle": "白黒はっきりしない判定の評価のしかた 〜ROC曲線と AUC〜"
},
"children": [
{
"data": {
"id": "cq11epo354g0",
"created": 1674626099589,
"text": "AUC\n(Area Under the ROC Curve)",
"font-family": "sans-serif",
"note": "ROC曲線の積分値\n理想は1\n",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2211/24/news019.html",
"hyperlinkTitle": "[評価指標]AUC(Area Under the ROC Curve:ROC曲線の下の面積)とは?"
},
"children": []
}
]
}
]
}
]
},
{
"data": {
"id": "cpe9yl1lxsw0",
"created": 1672314346682,
"text": "決定木\n(Decision Tree)",
"font-family": "sans-serif",
"note": "●分類木(Classification Tree)\nクラス分類\n\n●回帰木(Regression Tree)\n数値の予測\n",
"hyperlink": "https://en.wikipedia.org/wiki/Decision_tree",
"hyperlinkTitle": ""
},
"children": [
{
"data": {
"id": "cpqv8vo1new0",
"created": 1673593116236,
"text": "樹形図 デンドログラム\n(Dendrogram)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpsl6v3e52w0",
"created": 1673767867073,
"text": "ジニ不純度 (Gini impurity)",
"font-family": "sans-serif",
"hyperlink": "https://datawokagaku.com/decision_tree_classifier/",
"hyperlinkTitle": "【決定木】ジニ不純度と木の剪定(cost complexity pruning)を解説【機械学習入門29】"
},
"children": []
},
{
"data": {
"id": "cq0ui2icjyo0",
"created": 1674606614864,
"text": "Mini-Max法\n(mini-max method)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cq0uil80qqg0",
"created": 1674606655598,
"text": "αβ法\n(alpha-beta pruning)",
"font-family": "sans-serif",
"note": "Mini-Max法による探索をできるだけ減らす\n\n・αカット\n・βカット\n\n",
"hyperlink": "https://pictblog.com/gmini-max",
"hyperlinkTitle": "【G検定】Mini-Max法とαβ法~具体例でわかりやすい解説を試みてみた~"
},
"children": []
}
]
}
]
},
{
"data": {
"id": "cq2wgt5hdj40",
"created": 1674815278264,
"text": "単純ベイズ/ナイーブベイズ\n(Naive Bayes)",
"font-family": "sans-serif",
"hyperlink": "https://analysis-navi.com/?p=3108",
"hyperlinkTitle": "ナイーブベイズ分類器の仕組み"
},
"children": []
},
{
"data": {
"id": "cphrmuxu4og0",
"created": 1672668887700,
"text": "交差エントロピー誤差\n(Cross-entropy Loss)",
"font-family": "sans-serif",
"note": "●クロスエントロピー\n",
"hyperlink": "https://qiita.com/kenta1984/items/59a9ef1788e6934fd962",
"hyperlinkTitle": "交差エントロピー誤差をわかりやすく説明してみる"
},
"children": []
}
]
},
{
"data": {
"id": "cpealn3muso0",
"created": 1672316153534,
"text": "回帰\n(Regression)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpu15rcb38g0",
"created": 1673914478256,
"text": "線形回帰\n(Linear Regression)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cq4fj4jh2hc0",
"created": 1674970620827,
"text": "目的変数\n(objective variable)",
"font-family": "sans-serif",
"note": "予想したい値\n"
},
"children": []
},
{
"data": {
"id": "cq4fjc8cdls0",
"created": 1674970637569,
"text": "説明変数\n(explanatory variable)",
"font-family": "sans-serif",
"note": "目的変数を導くのに関係する値\n"
},
"children": []
},
{
"data": {
"id": "cq4fkrkuueo0",
"created": 1674970749341,
"text": "単回帰分析\n(Simple Linear Regression)",
"font-family": "sans-serif",
"note": "y = w0 + w1x1\n"
},
"children": []
},
{
"data": {
"id": "cpqo9tnc4bs0",
"created": 1673573442435,
"text": "重回帰分析\n(Multivariate Linear Regression)",
"font-family": "sans-serif",
"note": "y = w0 + w1x1 + w2x2 + … + wMxM\n",
"hyperlink": "https://www.asanoucla.com/%E8%A8%88%E9%87%8F%E5%88%86%E6%9E%90-%E8%A3%9C%E5%8A%A9%E6%95%99%E6%9D%90-r/",
"hyperlinkTitle": ""
},
"children": [
{
"data": {
"id": "cpxn7l5gn8g0",
"created": 1674281365798,
"text": "脱落変数バイアス OVB\n(Omitted Variable Bias)",
"font-family": "sans-serif",
"note": "必要な説明変数を含めない時\n",
"hyperlink": "http://www.ner.takushoku-u.ac.jp/masano/class_material/waseda/keiryo/R25_reg8_OBV.html",
"hyperlinkTitle": ""
},
"children": []
},
{
"data": {
"id": "cpxn7vsw6l40",
"created": 1674281388983,
"text": "処置後変数バイアス\n(post treatment variable bias)",
"font-family": "sans-serif",
"note": "入れるべきでない変数を含めた時\n"
},
"children": []
}
]
}
]
},
{
"data": {
"id": "cpd85t9xgw80",
"created": 1672207710972,
"text": "評価指標\n(Metrics)",
"font-family": "sans-serif",
"background": "transparent"
},
"children": [
{
"data": {
"id": "cphnxiir6u80",
"created": 1672658438233,
"text": "決定係数(R^2)\n(Coefficient of Determination)",
"note": "\n1 - \n(実測値 - 予測値)^2 の合計\n/ (実測値 - 実測値平均)^2 の合計\n\n= 1 - 残差平方和 / 全平方和\n",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2108/25/news033.html",
"hyperlinkTitle": "@IT",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cq7o5eggg1s0",
"created": 1675299615174,
"text": "残差平方和 RSS\n(Residual Sum of Squares)",
"font-family": "sans-serif",
"note": "残差^2 の合計\n= (実測値 - 予測値)^2 の合計\n\n二乗和誤差と同一視されることも多い\n",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2111/22/news011.html",
"hyperlinkTitle": "残差平方和(RSS:Residual Sum of Squares)/[損失関数]二乗和誤差(SSE:Sum of Squared Error)とは?"
},
"children": []
},
{
"data": {
"id": "cq7o6cbr5ag0",
"created": 1675299688900,
"text": "二乗和誤差 SSE\n(Sum of Squared Error)",
"font-family": "sans-serif",
"note": "誤差^2 の合計\n= (予測値 - 正解値)^2 の合計\n"
},
"children": []
}
]
},
{
"data": {
"id": "cqd02x806js0",
"created": 1675841074031,
"text": "自己回帰モデル AR\n(AutoRegressive Model)",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cq08pqfr2ps0",
"created": 1674545151081,
"text": "荷重減衰\n(Weight Decay) ",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cq08r1kbb2o0",
"created": 1674545253665,
"text": "正則化\n(Regularization)",
"font-family": "sans-serif",
"hyperlink": "https://aizine.ai/ridge-lasso-elasticnet/#toc9",
"hyperlinkTitle": "超入門!リッジ回帰・Lasso回帰・Elastic Netの基本と特徴をサクッと理解!"
},
"children": [
{
"data": {
"id": "cq8ko6ujzvs0",
"created": 1675391363048,
"text": "L0正則化",
"note": "0でないパラメータの個数\n",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cq8kojfxkhs0",
"created": 1675391390462,
"text": "L1正則化/ラッソ回帰 Lasso",
"font-family": "sans-serif",
"note": "ラッソ回帰 Lasso\nL1ノルム=重みの絶対値の合計\n※誤差のマンハッタン距離\n\n※L1(Lasso) / L2(Ridge) の覚え方\nhttps://zenn.dev/dlbsabu/articles/5300da50921070\n"
},
"children": []
},
{
"data": {
"id": "cq8kpct0k4g0",
"created": 1675391454380,
"text": "L2正則化/リッジ回帰 Ridge",
"font-family": "sans-serif",
"note": "リッジ回帰 Ridge\nL2ノルム=重みの2乗平均\n※誤差のユークリッド距離\n"
},
"children": []
},
{
"data": {
"id": "cq8kpyol1ig0",
"created": 1675391502001,
"text": "ElasticNet",
"font-family": "sans-serif",
"note": "L1正則化・L2正則化の折衷案\n"
},
"children": []
}
]
}
]
},
{
"data": {
"id": "cpf67d39e6g0",
"created": 1672405310162,
"text": "異常検知 (Anomaly Detection)",
"font-family": "sans-serif",
"note": "●外れ値(outlier)検知\n\n●異常部位検出\n心電図で異常なパターンが含まれる部分とか\n\n●変化点検知\nある時刻を境に検索キーワード急上昇など\n\n異常検知入門と手法まとめ\nhttps://qiita.com/toucan/items/c3343de3cfa236df3bda\n",
"hyperlink": "https://www.albert2005.co.jp/knowledge/machine_learning/anomaly_detection_basics/anomaly_detection",
"hyperlinkTitle": "異常検知とは"
},
"children": []
}
]
},
{
"data": {
"id": "cpq94zqepx40",
"created": 1673530747212,
"text": "学習",
"font-family": "sans-serif",
"background": "#eaf1dd"
},
"children": [
{
"data": {
"id": "cqdo8k33fa80",
"created": 1675909222259,
"text": "損失関数 (Loss Function)",
"font-family": "sans-serif",
"note": "または\n誤差関数 (Error Function)\nコスト関数 (Cost Function)\n\n予測値と正解値の差を計算する関数\n"
},
"children": []
},
{
"data": {
"id": "cqfr2ah3pi80",
"created": 1676120314396,
"text": "評価関数 (Evaluation Function)",
"hyperlink": "https://atmarkit.itmedia.co.jp/ait/articles/2104/22/news022.html",
"hyperlinkTitle": "",
"font-family": "sans-serif",
"note": "機械学習モデルの性能を評価する関数\n"
},
"children": []
},
{
"data": {
"id": "cq01z7mwjjk0",
"created": 1674526146026,
"text": "重み更新に関わる単位",
"font-family": "sans-serif",
"background": "#eaf1dd"
},
"children": [
{
"data": {
"id": "cq01zu2fzdk0",
"created": 1674526194855,
"text": "バッチサイズ (Batch Size)",
"note": "一回のイテレーションに用いるサンプル数\n",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cq01zm9l15s0",
"created": 1674526177873,
"text": "イテレーション (Iterations)",
"note": "重みが更新された回数\n1つのエポックを完了するために必要なバッチの数\n",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cq01zr5b53s0",
"created": 1674526188498,
"text": "エポック (Epoch)",
"note": "訓練データを何回繰り返し学習したか\n(何回勾配を降下したか)\n",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpq95md7d600",
"created": 1673530796479,
"text": "オンライン学習\n(Online Learning)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpq96h2dojk0",
"created": 1673530863305,
"text": "ミニバッチ学習\n(Mini-batch training)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpf61atnkm80",
"created": 1672404835043,
"text": "アンサンブル学習\n(Ensemble Learning)",
"font-family": "sans-serif",
"hyperlink": "https://agency-star.co.jp/column/ensemble-learning",
"hyperlinkTitle": "アンサンブル学習とは?仕組みやアルゴリズムを解説!バギング、ブースティング、スタッキングの違いも紹介"
},
"children": [
{
"data": {
"id": "cpq85e4a8tc0",
"created": 1673527957416,
"text": "バギング\n(Bagging)",
"font-family": "sans-serif",
"hyperlink": "https://qiita.com/tjmnmn/items/3aed6fb85f75446f74ca",
"hyperlinkTitle": ""
},
"children": [
{
"data": {
"id": "cpp38mewmbs0",
"created": 1673412545059,
"text": "ランダムフォレスト\n(Random Forest)",
"font-family": "sans-serif",
"hyperlink": "https://aismiley.co.jp/ai_news/random-forests/",
"hyperlinkTitle": "ランダムフォレストとは?基本の仕組みから活用事例までまとめて解説"
},
"children": [
{
"data": {
"id": "cpsleajqcyg0",
"created": 1673768449262,
"text": "ブートストラップ\n(Bootstrap Sampling)",
"font-family": "sans-serif"
},
"children": []
}
]
}
]
},
{
"data": {
"id": "cpq85seku6o0",
"created": 1673527988513,
"text": "ブースティング\n(Boosting)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpq868pvuio0",
"created": 1673528024025,
"text": "勾配ブースティング\n(Gradient Boosting)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpz6jzu8uqo0",
"created": 1674437499186,
"text": "XGboost\n(eXtreme Gradient Boosting)",
"note": "2014年\n",
"hyperlink": "https://toukei-lab.com/xgboost",
"hyperlinkTitle": "",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cqdmgvmc4ag0",
"created": 1675904232060,
"text": "Level-wise",
"note": "決定木の階層も併せて学習",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpz6jw4hq600",
"created": 1674437491099,
"text": "LightGBM",
"note": "2016年\n\n高速化(精度高いとは限らない)\n\nジニ不純度を計算して、分類が不十分なものを優先的に分岐を増やす\n",
"hyperlink": "https://toukei-lab.com/light-gbm",
"hyperlinkTitle": "",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cqdmgisbhi80",
"created": 1675904204124,
"text": "Leaf-wise",
"note": "決定木の葉ごとに学習\n※過学習しやすい\n",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpz6kmbvy8w0",
"created": 1674437548142,
"text": "CatBoost\n(Category Boosting)",
"hyperlink": "https://toukei-lab.com/catboost",
"hyperlinkTitle": "",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cpq8606nyso0",
"created": 1673528005449,
"text": "AdaBoost\n(Adaptive Boosting)",
"font-family": "sans-serif",
"hyperlink": "https://aizine.ai/adaboost-0128/",
"hyperlinkTitle": "機械学習を行うなら必須!「AdaBoost(アダブースト)」とは"
},
"children": []
}
]
},
{
"data": {
"id": "cptmvswccv40",
"created": 1673874202464,
"text": "スタッキング\n(Stacking)",
"font-family": "sans-serif",
"hyperlink": "https://www.codexa.net/what-is-ensemble-learning/",
"hyperlinkTitle": "機械学習上級者は皆使ってる?!アンサンブル学習の仕組みと3つの種類について解説します"
},
"children": []
}
]
}
]
},
{
"data": {
"id": "cpd7sixjjs80",
"created": 1672206669721,
"text": "モデルの評価",
"font-family": "sans-serif",
"background": "#eaf1dd"
},
"children": [
{
"data": {
"id": "cpo83hc3m8o0",
"created": 1673324687777,
"text": "data leakage, target leakage",
"note": "予測時には入手できない筈のデータが学習に含まれてしまう\n",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpf2dca30io0",
"created": 1672394494143,
"text": "交差検証\n(cross validation)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpoz5ujffr40",
"created": 1673401043214,
"text": "ホールドアウト (hold-out)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpoz74ydhi00",
"created": 1673401144250,
"text": "k-分割交差検証\n(K-fold Cross-validation)",
"font-family": "sans-serif"
},
"children": []
}
]
},
{
"data": {
"id": "cptn2o0x4yo0",
"created": 1673874740406,
"text": "訓練誤差\n(training error)",
"font-family": "sans-serif"
},
"children": []
},
{
"data": {
"id": "cpf6f05knc00",
"created": 1672405908917,
"text": "汎化誤差\n(generalization error)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cq0xfb2if400",
"created": 1674614861734,
"text": "バイアス (Bias)",
"font-family": "sans-serif"
},
"children": [
{
"data": {
"id": "cpq84193jfk0",
"created": 1673527851044,
"text": "未学習 (Underfitting)",
"font-family": "sans-serif"
},
"children": []