-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnetflowlabeler.py
executable file
·1489 lines (1305 loc) · 60.1 KB
/
netflowlabeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/env python3
# Copyright (C) 2009 Sebastian Garcia, Veronica Valeros
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
#
# Authors:
# Sebastian Garcia, sebastian.garcia@agents.fel.cvut.cz, eldraco@gmail.com
# Veronica Valeros, valerver@fel.cvut.cz, vero.valeros@gmail.com
# Stratosphere Laboratory, AIC, FEL, Czech Technical University in Prague
# Description
# A tool to add labels in netflow files based on a configuration.
# Flow file include Zeek, Argus, and NFdump. Both in CSV and TSV
"""
netflowlabeler.py is a tool to add labels in netflow files based on a
configuration file.
"""
import sys
import json
import argparse
import ipaddress
version = "0.5"
class labeler():
"""
This class handles the adding of new labeling conditions
and the return of the labels
conditionsGroup = [
{'Background': [
[ {'srcIP': 'all'} ]
] },
{'Normal': [
[ {'Proto':'IGMP'} ],
[ {'Proto':'ARP'} ]
] },
{'Botnet-CC': [
[ {'srcIP': '10.0.0.151'} ],
[ {'dstIP': '10.0.0.151'} ]
] },
{'Botnet-SPAM': [
[ {'Proto': 'TCP'}, {'srcPort': '25'} ],
[ {'Proto': 'TCP'}, {'dstPort': '25'} ]
] },
{'Botnet-DGA': [
[ {'Proto':'UDP'}, {'srcPort':'53'} ] ,
[ {'Proto':'UDP'}, {'dstPort':'53'} ]
] }
]
"""
conditionsGroup = []
def addCondition(self, condition):
"""
Add a condition.
Input: condition is a string?
"""
try:
self.conditionsGroup.append(condition)
if args.debug > 0:
print(f'\tCondition added: {condition}')
except Exception as inst:
print('[!] Error in class labeler addCondition(): unable to add a condition')
print(type(inst)) # the exception instance
print(inst.args) # arguments stored in .args
print(inst) # __str__ allows args to printed directly
sys.exit(-1)
def getLabel(self, column_values):
"""
Get the values of the columns of a netflow line,
matche the labels conditions, and return a label.
Input:
- column_values is a dict, where each key is the standard field in a netflow
Output:
- labelToReturn: return a tuple containing a generic and detailed label
"""
try:
# Default to empty genericlabel and detailedlabel
labelToReturn = ("(empty)", "(empty)")
# Process all the conditions
for group in self.conditionsGroup:
# The first key of the group is the label to put
# Example: {'Botnet-SPAM': [[{'Proto': 'TCP'}, {'srcPort': '25'}], [{'Proto': 'TCP'}, {'dstPort': '25'}]]}
labelline = list(group.keys())[0]
genericlabelToVerify = labelline.split(',')[0].strip()
# The detailed label may not be there, try to obtain it
try:
detailedlabelToVerify = labelline.split(',')[1].strip()
except IndexError:
# There is no detailedlabel
detailedlabelToVerify = '(empty)'
if args.debug > 0:
print(f'\tLabel to verify {labelline}: {genericlabelToVerify} {detailedlabelToVerify}')
orConditions = group[labelline]
if args.debug > 0:
print(f'\t\tOr conditions group : {orConditions}')
# orConditions is an array.
# Each position of this array should be ORed with the next position
for andcondition in orConditions:
# If any of these andConditions groups is true,
# just return the label, because this for is an 'OR'
if args.debug > 0:
print(f'\t\tAnd condition group : {andcondition}')
# With this we keep control of how each part of the and is going...
allTrue = True
for acond in andcondition:
if args.debug > 0:
print(f'\t\t\tAnd this with : {acond}')
condColumn = list(acond.keys())[0]
condValue = acond[condColumn].lower()
condColumn = condColumn.lower()
if condColumn.find('!') != -1:
# Negation condition
condColumn = condColumn.replace('!', '')
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
if (condValue != netflowValue) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue (negative)')
continue
else:
if args.debug > 0:
print('\t\t\tFalse (negative)')
allTrue = False
break
elif condColumn.find('!') == -1:
# Normal condition, no negation
# Is the column a number?
# if ('bytes' in condColumn) or ('packets' in condColumn) or ('srcport' in condColumn) or
# ('dstport' in condColumn) or ('sbytes' in condColumn) or ('dbyets' in condColumn) or
# ('spkts' in condColumn) or ('dpkts' in condColumn) or ('ip_orig_bytes' in condColumn) or
# ('ip_resp_bytes' in condColumn):
column_num_keywords = ['bytes', 'packets', 'srcport', 'dstport',
'sbytes', 'dbytes', 'spkts', 'dpkts',
'ip_orig_bytes', 'ip_resp_bytes']
if any(keyword in condColumn for keyword in column_num_keywords):
# It is a colum that we can treat as a number
# Find if there is <, > or = in the condition
if '>' in condColumn[-1]:
condColumn = condColumn[:-1]
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
# Pay attention to directionality of condition 'condValue < flowvalue'
if (int(condValue) < int(netflowValue)) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
elif '<' in condColumn[-1]:
condColumn = condColumn[:-1]
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
# Pay attention to directionality of condition 'condValue > flowvalue'
if (int(condValue) > int(netflowValue)) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
elif '<=' in condColumn[-2]:
condColumn = condColumn[:-2]
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
# Pay attention to directionality of condition 'condValue >= flowvalue'
if (int(condValue) >= int(netflowValue)) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
elif '>=' in condColumn[-2]:
condColumn = condColumn[:-2]
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
# Pay attention to directionality of condition 'condValue <= flowvalue'
if (int(condValue) <= int(netflowValue)) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
else:
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
if (int(condValue) == int(netflowValue)) or (condValue == 'all'):
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
# Is the column related to an IP and the value has a / for the CIDR?
elif ('ip' in condColumn) and ('/' in condValue):
netflowValue = column_values[condColumn]
if ':' in condValue:
temp_net = ipaddress.IPv6Network(condValue)
else:
temp_net = ipaddress.IPv4Network(condValue)
temp_ip = ipaddress.ip_address(netflowValue)
if temp_ip in temp_net:
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
# It is not a colum that we can treat as a number
else:
netflowValue = column_values[condColumn]
if (condValue == netflowValue) or (condValue == 'all'):
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
allTrue = True
if args.debug > 0:
print('\t\t\tTrue')
continue
else:
netflowValue = column_values[condColumn]
if args.debug > 0:
print(f'\t\tTo compare field: {condColumn}, Condition value: {condValue}, Netflow value: {netflowValue}')
if args.debug > 0:
print('\t\t\tFalse')
allTrue = False
break
if allTrue:
labelToReturn = (genericlabelToVerify, detailedlabelToVerify)
if args.debug > 0:
print(f'\tNew label assigned: {genericlabelToVerify} {detailedlabelToVerify}')
if args.verbose > 1:
if 'Background' in labelToReturn:
print(f'\tFinal label assigned: {labelToReturn}')
else:
print(f'\tFinal label assigned: \x1b\x5b1;31;40m{labelToReturn}\x1b\x5b0;0;40m')
return labelToReturn
except Exception as inst:
print('[!] Error in class labeler getLabel(): unable to label the given column values')
print(column_values)
print(type(inst)) # the exception instance
print(inst.args) # arguments stored in .args
print(inst) # __str__ allows args to printed directly
sys.exit(-1)
def output_netflow_line_to_file(outputfile, originalline, filetype='', genericlabel='', detailedlabel=''):
"""
Get data and store it on a new file
If genericlabel is empty, it is a headler line to process
"""
try:
if 'csv' in filetype:
separator = ','
elif 'tab' in filetype:
separator = '\t'
if type(originalline) == str and genericlabel == '':
# It is a headerline
# Should we add the 'label' string? Zeek has many headerlines
if '#fields' in originalline:
outputline = originalline.strip() + separator + 'label' + separator + 'detailedlabel' + '\n'
outputfile.writelines(outputline)
elif '#types' in originalline:
outputline = originalline.strip() + separator + 'string' + separator + 'string' + '\n'
outputfile.writelines(outputline)
else:
outputfile.writelines(originalline)
# We are not putting the 'label' string in the header!
elif type(originalline) == str and genericlabel != '':
# These are values to store
outputline = originalline.strip() + separator + genericlabel + separator + detailedlabel + '\n'
outputfile.writelines(outputline)
if args.debug > 1:
print(f'Just outputed label {genericlabel} in line {outputline}')
# keep it open!
except Exception as inst:
print('Problem in output_labeled_netflow_file()')
print(type(inst)) # the exception instance
print(inst.args) # arguments stored in .args
print(inst) # __str__ allows args to printed directly
sys.exit(-1)
def process_nfdump(f, headers, labelmachine):
"""
DEPRECATED!! NEEDS UPDATE COMPLETELY
Process and label an nfdump file
"""
pass
"""
# Just to monitor how many lines we read
amount_lines_processed = 0
# Parse the file into an array of dictionaries.
# We will use the columns names as dictionary keys
# Example: [ {'Date': '10/10/2013} , {'SrcIp':'1.1.1.1} , , ]
netflowArray = []
columnDict = {}
# Replace the TABs for spaces, if it has them...,
# and replace the : in the ports to spaces also,
# and strip the \n, and the word flow
temp2 = headers.replace('flow', '')
temp = re.sub('\s+', ' ', temp2).replace(':', ' ').strip()
columnNames = temp.split(' ')
# Only to separate src ip from dst ip
addressType = ''
# if args.debug > 0:
# print(f'Columns names: {columnNames}')
for cN in columnNames:
# Separate between src ip and dst ip
if 'Src' in cN:
addressType = 'src'
elif 'Dst' in cN:
addressType = 'dst'
elif 'IP' in cN:
columnDict[addressType+cN] = ""
netflowArray.append(columnDict)
columnDict = {}
# Separate ports
elif 'Port' in cN:
columnDict[addressType+cN] = ""
netflowArray.append(columnDict)
columnDict = {}
elif 'Addr' in cN:
pass
elif 'Prot' in cN:
columnDict['Proto'] = ""
netflowArray.append(columnDict)
columnDict = {}
elif 'Durat' in cN:
columnDict['Duration'] = ""
netflowArray.append(columnDict)
columnDict = {}
elif 'Flow' in cN:
columnDict['Flows'] = ""
netflowArray.append(columnDict)
columnDict = {}
else:
columnDict[cN] = ""
netflowArray.append(columnDict)
columnDict = {}
columnDict['Label'] = ""
netflowArray.append(columnDict)
columnDict = {}
# if args.debug > 0:
# print('netflowArray')
# print(netflowArray)
# Create the output file with the header
outputfile = open(args.netflowFile+'.labeled', 'w+')
# Write the column names
columnnames = "Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows Label\n"
outputfile.writelines(columnnames)
# Read the second line to start processing
line = f.readline()
amount_lines_processed += 1
while line:
if args.verbose > 0:
print(f'Netflow line: {line}', end=' ')
# Parse the columns
# Strip and replace ugly stuff
temp2 = line.replace('->', '')
temp = re.sub('\s+', ' ', temp2).strip()
columnValues = temp.split(' ')
# Date
date = columnValues[0]
# Store the value in the dict
dict = netflowArray[0]
columnName = list(dict.keys())[0]
dict[columnName] = date
netflowArray[0] = dict
hour = columnValues[1]
# Store the value in the dict
dict = netflowArray[1]
columnName = list(dict.keys())[0]
dict[columnName] = hour
netflowArray[1] = dict
duration = columnValues[2]
# Store the value in the dict
dict = netflowArray[2]
columnName = list(dict.keys())[0]
dict[columnName] = duration
netflowArray[2] = dict
protocol = columnValues[3].upper()
# Store the value in the dict
dict = netflowArray[3]
columnName = list(dict.keys())[0]
# columnName = 'Proto'
dict[columnName] = protocol
netflowArray[3] = dict
if 'TCP' in protocol or 'UDP' in protocol or 'RTP' in protocol:
temp = columnValues[4]
if len(temp.split(':')) <= 2:
# It is IPV4
srcip = temp.split(':')[0]
# Store the value in the dict
dict = netflowArray[4]
columnName = list(dict.keys())[0]
dict[columnName] = srcip
netflowArray[4] = dict
srcport = temp.split(':')[1]
# Store the value in the dict
dict = netflowArray[5]
columnName = list(dict.keys())[0]
dict[columnName] = srcport
netflowArray[5] = dict
temp2 = columnValues[5]
dstip = temp2.split(':')[0]
# Store the value in the dict
dict = netflowArray[6]
columnName = list(dict.keys())[0]
dict[columnName] = dstip
netflowArray[6] = dict
dstport = temp2.split(':')[1]
# Store the value in the dict
dict = netflowArray[7]
columnName = list(dict.keys())[0]
dict[columnName] = dstport
netflowArray[7] = dict
elif len(temp.split(':')) > 2:
# We are using ipv6! THIS DEPENDS A LOT ON THE
# program that created the netflow..
srcip = temp[0:temp.rfind(':')]
# Store the value in the dict
dict = netflowArray[4]
columnName = list(dict.keys())[0]
dict[columnName] = srcip
netflowArray[4] = dict
srcport = temp[temp.rfind(':')+1:]
# Store the value in the dict
dict = netflowArray[5]
columnName = list(dict.keys())[0]
dict[columnName] = srcport
netflowArray[5] = dict
temp2 = columnValues[5]
dstip = temp2[0:temp2.rfind(':')]
# Store the value in the dict
dict = netflowArray[6]
columnName = list(dict.keys())[0]
dict[columnName] = dstip
netflowArray[6] = dict
dstport = temp2[temp2.rfind(':')+1:]
# Store the value in the dict
dict = netflowArray[7]
columnName = list(dict.keys())[0]
dict[columnName] = dstport
netflowArray[7] = dict
else:
print()
print('Please implement this protocol!')
print(line)
sys.exit(-1)
elif protocol == 'IPNIP' or protocol == 'RSVP' or protocol == 'GRE' or protocol == 'UDT' or /
protocol == 'ARP' or protocol == 'ICMP' or protocol == 'PIM' or protocol == 'ESP' or /
protocol == 'UNAS' or protocol == 'IGMP' or 'IPX' in protocol or 'RARP' in protocol /
or 'LLC' in protocol or 'IPV6' in protocol:
srcip = temp = columnValues[4]
# Store the value in the dict
dict = netflowArray[4]
columnName = list(dict.keys())[0]
dict[columnName] = srcip
netflowArray[4] = dict
srcport = '0'
# Store the value in the dict
dict = netflowArray[5]
columnName = list(dict.keys())[0]
dict[columnName] = srcport
netflowArray[5] = dict
dstip = temp = columnValues[5]
# Store the value in the dict
dict = netflowArray[6]
columnName = list(dict.keys())[0]
dict[columnName] = dstip
netflowArray[6] = dict
dstport = '0'
# Store the value in the dict
dict = netflowArray[7]
columnName = list(dict.keys())[0]
dict[columnName] = dstport
netflowArray[7] = dict
flags = columnValues[6].upper()
# Store the value in the dict
dict = netflowArray[8]
columnName = list(dict.keys())[0]
dict[columnName] = flags
netflowArray[8] = dict
tos = columnValues[7]
# Store the value in the dict
dict = netflowArray[9]
columnName = list(dict.keys())[0]
dict[columnName] = tos
netflowArray[9] = dict
packets = columnValues[8]
# Store the value in the dict
dict = netflowArray[10]
columnName = list(dict.keys())[0]
dict[columnName] = packets
netflowArray[10] = dict
bytes = columnValues[9]
# Store the value in the dict
dict = netflowArray[11]
columnName = list(dict.keys())[0]
dict[columnName] = bytes
netflowArray[11] = dict
flows = columnValues[10]
# Store the value in the dict
dict = netflowArray[12]
columnName = list(dict.keys())[0]
dict[columnName] = flows
netflowArray[12] = dict
# Empty the label in the dict
dict = netflowArray[13]
columnName = list(dict.keys())[0]
dict[columnName] = ""
netflowArray[13] = dict
# if args.debug > 0:
# print(date,hour,duration,protocol, srcip, srcport, dstip, dstport, flags, tos, packets, bytes, flows)
# print(netflowArray)
# Request a label
genericlabel, detailedlabel = labelmachine.getLabel(netflowArray)
# Store the value in the dict
dict = netflowArray[13]
columnName = list(dict.keys())[0]
dict[columnName] = genericlabel
netflowArray[13] = dict
# if args.debug > 0:
# print(netflowArray)
# Ask to store the netflow
output_netflow_line_to_file(outputfile, netflowArray)
line = f.readline()
amount_lines_processed += 1
# Close the outputfile
outputfile.close()
"""
def define_columns(headerline, filetype):
""" Define the columns for Argus and Zeek-tab from the line received """
# These are the indexes for later fast processing
column_idx = {}
column_idx['starttime'] = False
column_idx['endtime'] = False
column_idx['dur'] = False
column_idx['proto'] = False
column_idx['appproto'] = False
column_idx['srcip'] = False
column_idx['srcport'] = False
column_idx['dir'] = False
column_idx['dstip'] = False
column_idx['dstport'] = False
column_idx['state'] = False
column_idx['pkts'] = False
column_idx['spkts'] = False
column_idx['dpkts'] = False
column_idx['bytes'] = False
column_idx['sbytes'] = False
column_idx['dbytes'] = False
column_idx['orig_ip_bytes'] = False
column_idx['resp_ip_bytes'] = False
column_idx['history'] = False
column_idx['event_type'] = False
column_idx['uid'] = False
column_idx['local_orig'] = False
column_idx['local_resp'] = False
column_idx['missed_bytes'] = False
column_idx['tunnel_parents'] = False
try:
if 'csv' in filetype or 'tab' in filetype:
# This should work for zeek-csv, zeek-tab, argus-csv, nfdump-csv
if 'csv' in filetype:
separator = ','
elif 'tab' in filetype:
separator = '\t'
nline = headerline.strip().split(separator)
try:
# Remove the extra column of zeek if it is there
nline.remove('#fields')
except ValueError:
# ignore if #fields is not there
pass
if args.debug > 1:
print(f'Headers line: {nline}')
for field in nline:
if args.debug > 2:
print(f'Field: {field.lower()}, index: {nline.index(field)}')
if 'time' in field.lower() or field.lower() == 'ts':
column_idx['starttime'] = nline.index(field)
elif 'uid' in field.lower():
column_idx['uid'] = nline.index(field)
elif 'dur' in field.lower():
column_idx['dur'] = nline.index(field)
elif 'proto' in field.lower():
column_idx['proto'] = nline.index(field)
elif 'srca' in field.lower() or 'id.orig_h' in field.lower():
column_idx['srcip'] = nline.index(field)
elif 'srcport' in field.lower() or 'id.orig_p' in field.lower():
column_idx['srcport'] = nline.index(field)
elif 'dir' in field.lower():
column_idx['dir'] = nline.index(field)
elif 'dsta' in field.lower() or 'id.resp_h' in field.lower():
column_idx['dstip'] = nline.index(field)
elif 'dstport' in field.lower() or 'id.resp_p' in field.lower():
column_idx['dstport'] = nline.index(field)
elif 'state' in field.lower():
column_idx['state'] = nline.index(field)
elif 'srcbytes' in field.lower() or 'orig_bytes' in field.lower():
column_idx['sbytes'] = nline.index(field)
elif 'destbytes' in field.lower() or 'resp_bytes' in field.lower():
column_idx['dbytes'] = nline.index(field)
elif 'service' in field.lower():
column_idx['appproto'] = nline.index(field)
elif 'srcpkts' in field.lower() or 'orig_pkts' in field.lower():
column_idx['spkts'] = nline.index(field)
elif 'destpkts' in field.lower() or 'resp_pkts' in field.lower():
column_idx['dpkts'] = nline.index(field)
elif 'totpkts' in field.lower():
column_idx['pkts'] = nline.index(field)
elif 'totbytes' in field.lower():
column_idx['bytes'] = nline.index(field)
elif 'history' in field.lower():
column_idx['history'] = nline.index(field)
elif 'orig_ip_bytes' in field.lower():
column_idx['orig_ip_bytes'] = nline.index(field)
elif 'resp_ip_bytes' in field.lower():
column_idx['resp_ip_bytes'] = nline.index(field)
elif 'local_orig' in field.lower():
column_idx['local_orig'] = nline.index(field)
elif 'local_resp' in field.lower():
column_idx['local_resp'] = nline.index(field)
elif 'missed_bytes' in field.lower():
column_idx['missed_bytes'] = nline.index(field)
elif 'tunnel_parents' in field.lower():
column_idx['tunnel_parents'] = nline.index(field)
elif 'json' in filetype:
if 'timestamp' in headerline:
# Suricata json
column_idx['starttime'] = 'timestamp'
column_idx['srcip'] = 'src_ip'
column_idx['dur'] = False
column_idx['proto'] = 'proto'
column_idx['srcport'] = 'src_port'
column_idx['dstip'] = 'dst_ip'
column_idx['dstport'] = 'dest_port'
column_idx['spkts'] = 'flow/pkts_toserver'
column_idx['dpkts'] = 'flow/pkts_toclient'
column_idx['sbytes'] = 'flow/bytes_toserver'
column_idx['dbytes'] = 'flow/bytes_toclient'
column_idx['event_type'] = 'event_type'
elif 'ts' in headerline:
# Zeek json
column_idx['starttime'] = 'ts'
column_idx['srcip'] = 'id.orig_h'
column_idx['endtime'] = ''
column_idx['dur'] = 'duration'
column_idx['proto'] = 'proto'
column_idx['appproto'] = 'service'
column_idx['srcport'] = 'id.orig_p'
column_idx['dstip'] = 'id.resp_h'
column_idx['dstport'] = 'id.resp_p'
column_idx['state'] = 'conn_state'
column_idx['pkts'] = ''
column_idx['spkts'] = 'orig_pkts'
column_idx['dpkts'] = 'resp_pkts'
column_idx['bytes'] = ''
column_idx['sbytes'] = 'orig_bytes'
column_idx['dbytes'] = 'resp_bytes'
column_idx['orig_ip_bytes'] = 'orig_ip_bytes'
column_idx['resp_ip_bytes'] = 'resp_ip_bytes'
column_idx['history'] = 'history'
# Some of the fields were not found probably,
# so just delete them from the index if their value is False.
# If not we will believe that we have data on them
# We need a temp dict because we can not change the size of dict while analyzing it
temp_dict = {}
for i in column_idx:
if type(column_idx[i]) == bool and column_idx[i] is False:
continue
temp_dict[i] = column_idx[i]
column_idx = temp_dict
return column_idx
except Exception as inst:
exception_line = sys.exc_info()[2].tb_lineno
print(f'\tProblem in define_columns() line {exception_line}', 0, 1)
print(str(type(inst)), 0, 1)
print(str(inst), 0, 1)
sys.exit(1)
def define_type(data):
"""
Try to define very fast the type of input from :Zeek file,
Suricata json, Argus binetflow CSV, Argus binetflow TSV
Using a Heuristic detection
Input: The first line after the headers if there were some, as 'data'
Outputs types can be can be: zeek-json, suricata, argus-tab, argus-csv, zeek-tab
"""
try:
# If line json, it can be Zeek or suricata
# If line CSV, it can be Argus
# If line TSV, it can be Argus or zeek
input_type = 'unknown'
# Is it json?
try:
json_line = json.loads(data)
# json
try:
# Zeek?
_ = json_line['ts']
input_type = 'zeek-json'
return input_type
except KeyError:
# Suricata?
_ = json_line['timestamp']
input_type = 'suricata-json'
return input_type
except json.JSONDecodeError:
# No json
if type(data) == str:
# string
nr_commas = len(data.split(','))
nr_tabs = len(data.split(' '))
if nr_commas > nr_tabs:
# Commas is the separator
if nr_commas > 40:
input_type = 'nfdump-csv'
else:
# comma separated argus file
input_type = 'argus-csv'
elif nr_tabs >= nr_commas:
# Tabs is the separator or it can be also equal number of commas and tabs, including both 0
# Can be Zeek conn.log with TABS
# Can be Argus binetflow with TABS
# Can be Nfdump binetflow with TABS
if '->' in data or 'StartTime' in data:
input_type = 'argus-tab'
elif 'separator' in data:
input_type = 'zeek-tab'
elif 'Date' in data:
input_type = 'nfdump-tab'
return input_type
except Exception as inst:
exception_line = sys.exc_info()[2].tb_lineno
print(f'\tProblem in define_type() line {exception_line}', 0, 1)
print(str(type(inst)), 0, 1)
print(str(inst), 0, 1)
sys.exit(1)
def process_zeek(column_idx, input_file, output_file, labelmachine, filetype):
"""
Process and label a Zeek file using the label configuration.
Zeek files can have three distinct field separators:
- 'tab': currently supported
- 'csv': currently supported
- 'json': not implemented yet
"""
try:
amount_lines_processed = 0
column_values = {}
if args.verbose > 0:
print(f'[+] Labeling the flow file {args.netflowFile}')
# Read firstlines
line = input_file.readline()
# Delete headerlines
while '#' in line:
line = input_file.readline()
# Process each flow in input file
while line:
# Count the flows processed
amount_lines_processed += 1
if args.verbose > 1:
print(f'Netflow line: {line}', end='')
# Zeek files can be in csv, tab or JSON format
# Labeling CSV and TAB uses the same method
if 'csv' in filetype or 'tab' in filetype:
# Work with csv and tabs
if 'csv' in filetype:
separator = ','
elif 'tab' in filetype:
separator = '\t'
# Transform the line into an array
line_values = line.split(separator)
# Read values from the flow line
for key in column_idx:
column_values[key] = line_values[column_idx[key]]
# Create the hand-made columns that are a sum of other columns
# First empty them
column_values['bytes'] = ''
column_values['pkts'] = ''
column_values['ipbytes'] = ''
# bytes: total bytes. Calculated as the SUM of sbytes and dbytes
# We do it like this because sometimes the column can be - or 0
if column_values['sbytes'] == '-':
sbytes = 0
else:
sbytes = int(column_values['sbytes'])
if column_values['dbytes'] == '-':
dbytes = 0
else:
dbytes = int(column_values['dbytes'])
column_values['bytes'] = str(sbytes + dbytes)
# print(f'New column bytes = {column_values["bytes"]}')
# pkts: total packets. Calculated as the SUM of spkts and dpkts
# We do it like this because sometimes the column can be - or 0
if column_values['spkts'] == '-':
spkts = 0
else:
spkts = int(column_values['spkts'])
if column_values['dpkts'] == '-':
dpkts = 0
else:
dpkts = int(column_values['dpkts'])
column_values['pkts'] = str(spkts + dpkts)
# print(f'New column pkst = {column_values["pkts"]}')
# ipbytes: total transferred bytes.
# Calculated as the SUM of orig_ip_bytes and resp_ip_bytes.
# We do it like this because sometimes the column can be - or 0
if column_values['orig_ip_bytes'] == '-':
sip_bytes = 0
else:
sip_bytes = int(column_values['orig_ip_bytes'])
if column_values['resp_ip_bytes'] == '-':
dip_bytes = 0
else:
dip_bytes = int(column_values['resp_ip_bytes'])
column_values['ipbytes'] = str(sip_bytes + dip_bytes)
# print(f'New column ipbytes = {column_values["ipbytes"]}')
# Request a label
genericlabel, detailedlabel = labelmachine.getLabel(column_values)
if args.debug > 1:
print(f'Label {genericlabel} assigned in line {line}')
# Store the netflow
output_netflow_line_to_file(output_file, line, filetype, genericlabel=genericlabel, detailedlabel=detailedlabel)
# Read next flow line ignoring comments
line = input_file.readline()
while '#' in line:
line = input_file.readline()
elif 'json' in filetype:
# Count the first line
amount_lines_processed += 1
pass
# Returned number of labeled flows
return amount_lines_processed
except Exception as inst:
exception_line = sys.exc_info()[2].tb_lineno
print(f'\t[!] Error in process_zeek(): exception in line {exception_line}', 0, 1)
print(str(type(inst)), 0, 1)
print(str(inst), 0, 1)
sys.exit(1)
def process_argus(column_idx, output_file, labelmachine, filetype):
"""
DEPRECATED!! NEEDS UPDATE COMPLETELY
Process an Argus file
"""
try:
pass
"""
print(column_idx)
return 0
# This is argus files...
amount_lines_processed = 0
# Parse the file into an array of dictionaries. We will use the columns names as dictionary keys
# Example: [ {'Date': '10/10/2013} , {'SrcIp':'1.1.1.1} , , ]
netflowArray = []