-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
398 lines (310 loc) · 12.1 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright 2025 Snowflake Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
from concurrent.futures import ThreadPoolExecutor
import datetime
import textwrap
import time
import streamlit as st
from snowflake.core import Root
from snowflake.cortex import complete
st.set_page_config(page_title="Streamlit assistant", page_icon="💬")
# -----------------------------------------------------------------------------
# Set things up.
@st.cache_resource(ttl="12h")
def get_session():
return st.connection("snowflake").session()
root = Root(get_session())
executor = ThreadPoolExecutor(max_workers=5)
MODEL = "claude-3-5-sonnet"
DB = "ST_ASSISTANT"
SCHEMA = "PUBLIC"
DOCSTRINGS_SEARCH_SERVICE = "STREAMLIT_DOCSTRINGS_SEARCH_SERVICE"
PAGES_SEARCH_SERVICE = "STREAMLIT_DOCS_PAGES_SEARCH_SERVICE"
HISTORY_LENGTH = 5
SUMMARIZE_OLD_HISTORY = True
DOCSTRINGS_CONTEXT_LEN = 10
PAGES_CONTEXT_LEN = 10
MIN_TIME_BETWEEN_REQUESTS = datetime.timedelta(seconds=3)
CORTEX_URL = (
"https://docs.snowflake.com/en/guides-overview-ai-features"
"?utm_source=streamlit"
"&utm_medium=referral"
"&utm_campaign=streamlit-demo-apps"
"&utm_content=streamlit-assistant"
)
GITHUB_URL = "https://github.com/streamlit/streamlit-assistant"
DEBUG_MODE = st.query_params.get("debug", "false").lower() == "true"
INSTRUCTIONS = textwrap.dedent("""
- You are a helpful AI chat assistant focused on answering quesions about
Streamlit, Streamlit Community Cloud, and general Python.
- You will be given extra information provided inside tags like this
<foo></foo>.
- Use context and history to provide a coherent answer.
- Use markdown such as headers (starting with ###), code blocks, bullet
points, 3-space indentation for sub bullets, and backticks for inline
code and markdown features like icon names.
- Assume the user is a newbie.
- Write paragraphs of explanation, as if you're writing documentation.
- Offer alternatives where they exist.
- Provide examples.
- Include related links throughout the text and at the bottom.
- Avoid experimental and private APIs.
- Don't say things like "according to the provided context".
- If you don't know, just say "I don't know the answer to that question."
- Streamlit is a product of Snowflake.
""")
def build_prompt(**kwargs):
"""Builds a prompt string with the kwargs as HTML-like tags.
For example, this:
build_prompt(foo="1\n2\n3", bar="4\n5\n6")
...returns:
'''
<foo>
1
2
3
</foo>
<bar>
4
5
6
</bar>
'''
"""
prompt = []
for name, contents in kwargs.items():
if contents:
prompt.append(f"<{name}>\n{contents}\n</{name}>")
prompt_str = "\n".join(prompt)
return prompt_str
# Just some little objects to make tasks more readable.
TaskInfo = namedtuple("TaskInfo", ["name", "function", "args"])
TaskResult = namedtuple("TaskResult", ["name", "result"])
def build_question_prompt(question):
"""Fetches info from different services and creates the prompt string."""
old_history = st.session_state.messages[:-HISTORY_LENGTH]
recent_history = st.session_state.messages[-HISTORY_LENGTH:]
if recent_history:
recent_history_str = history_to_text(recent_history)
else:
recent_history_str = None
# Fetch information from different services in parallel.
task_infos = []
if SUMMARIZE_OLD_HISTORY and old_history:
task_infos.append(
TaskInfo(
name="old_message_summary",
function=generate_chat_summary,
args=(old_history,),
)
)
if PAGES_CONTEXT_LEN:
task_infos.append(
TaskInfo(
name="documentation_pages",
function=search_relevant_pages,
args=(question,),
)
)
if DOCSTRINGS_CONTEXT_LEN:
task_infos.append(
TaskInfo(
name="command_docstrings",
function=search_relevant_docstrings,
args=(question,),
)
)
results = executor.map(
lambda task_info: TaskResult(
name=task_info.name,
result=task_info.function(*task_info.args),
),
task_infos,
)
context = {name: result for name, result in results}
return build_prompt(
instructions=INSTRUCTIONS,
**context,
recent_messages=recent_history_str,
question=question,
)
def generate_chat_summary(messages):
"""Summarizes the chat history in `messages`."""
prompt = build_prompt(
instructions="Summarize this conversation as concisely as possible.",
conversation=history_to_text(messages),
)
return complete(MODEL, prompt, session=get_session())
def history_to_text(chat_history):
"""Converts chat history into a string."""
return "\n".join(f"[{h['role']}]: {h['content']}" for h in chat_history)
def search_relevant_pages(query):
"""Searches the markdown contents of Streamlit's documentation."""
cortex_search_service = (
root.databases[DB].schemas[SCHEMA].cortex_search_services[PAGES_SEARCH_SERVICE]
)
context_documents = cortex_search_service.search(
query,
columns=["PAGE_URL", "PAGE_CHUNK"],
filter={},
limit=PAGES_CONTEXT_LEN,
)
results = context_documents.results
context = [f"[{row['PAGE_URL']}]: {row['PAGE_CHUNK']}" for row in results]
context_str = "\n".join(context)
return context_str
def search_relevant_docstrings(query):
"""Searches the docstrings of Streamlit's commands."""
cortex_search_service = (
root.databases[DB]
.schemas[SCHEMA]
.cortex_search_services[DOCSTRINGS_SEARCH_SERVICE]
)
context_documents = cortex_search_service.search(
query,
columns=["STREAMLIT_VERSION", "COMMAND_NAME", "DOCSTRING_CHUNK"],
filter={"@eq": {"STREAMLIT_VERSION": "latest"}},
limit=DOCSTRINGS_CONTEXT_LEN,
)
results = context_documents.results
context = [
f"[Document {i}]: {row['DOCSTRING_CHUNK']}" for i, row in enumerate(results)
]
context_str = "\n".join(context)
return context_str
def get_response(prompt):
return complete(
MODEL,
prompt,
stream=True,
session=get_session(),
)
def send_telemetry(**kwargs):
"""Records some telemetry about questions being asked."""
# TODO: Implement this.
pass
def show_feedback_controls(message_index):
"""Shows the "How did I do?" control."""
st.write("")
with st.popover("How did I do?"):
with st.form(key=f"feedback-{message_index}", border=False):
st.markdown(":small[Rating]")
rating = st.feedback("stars")
details = st.text_area("More information")
if st.checkbox("Include chat history with my feedback", True):
relevant_history = st.session_state.messages[:message_index]
else:
relevant_history = []
st.form_submit_button("Send feedback")
# TODO: Send feedback and history.
st.caption("PS: This is not connected to anything yet!")
# -----------------------------------------------------------------------------
# Draw the UI.
cols = st.columns([3, 1], vertical_alignment="bottom")
with cols[0]:
st.title("Streamlit assistant", anchor=False)
with cols[1]:
clear_conversation = st.button(
"Restart",
icon=":material/refresh:",
use_container_width=True,
)
if clear_conversation or "messages" not in st.session_state:
st.session_state.messages = []
if "prev_question_timestamp" not in st.session_state:
st.session_state.prev_question_timestamp = datetime.datetime.fromtimestamp(
0)
with st.expander(
":material/balance: "
"This is an AI chatbot, so it may hallucinate. Expand to see legal "
"disclaimer."
):
st.write("""
This AI chatbot is powered by Snowflake and public Streamlit
information. Answers may be inaccurate, inefficient, or biased.
Any use or decisions based on such answers should include reasonable
practices including human oversight to ensure they are safe,
accurate, and suitable for your intended purpose. Streamlit is not
liable for any actions, losses, or damages resulting from the use
of the chatbot. Do not enter any private, sensitive, personal, or
regulated data. By using this chatbot, you acknowledge and agree
that input you provide and answers you receive (collectively,
“Content”) may be used by Snowflake to provide, maintain, develop,
and improve their respective offerings. For more
information on how Snowflake may use your Content, see
https://streamlit.io/terms-of-service.
""")
st.info(
":small["
":material/info: "
"This app uses "
f"[Snowflake Cortex]({CORTEX_URL}) "
f"and is [fully open source]({GITHUB_URL})! "
"]"
)
# Show a fake question from the assistant to get the user started.
with st.chat_message("assistant"):
st.markdown("Hello, how may I help you?")
# Display chat messages from history as speech bubbles.
for i, message in enumerate(st.session_state.messages):
with st.chat_message(message["role"]):
if message["role"] == "assistant":
st.container() # Fix ghost message bug.
st.markdown(message["content"])
if message["role"] == "assistant":
show_feedback_controls(i)
if question := st.chat_input("Ask a question..."):
# When the user posts a message...
# Streamlit's Markdown engine interprets "$" as LaTeX code (used to
# display math). The line below fixes it.
question = question.replace("$", r"\$")
# Display message as a speech bubble.
with st.chat_message("user"):
st.text(question)
# Display assistant response as a speech bubble.
with st.chat_message("assistant"):
with st.spinner("Waiting..."):
# Rate-limit the input if needed.
question_timestamp = datetime.datetime.now()
time_diff = question_timestamp - st.session_state.prev_question_timestamp
st.session_state.prev_question_timestamp = question_timestamp
if time_diff < MIN_TIME_BETWEEN_REQUESTS:
time.sleep(time_diff.seconds + time_diff.microseconds * 0.001)
question = question.replace("'", "")
# Build a detailed prompt.
if DEBUG_MODE:
with st.status("Computing prompt...") as status:
full_prompt = build_question_prompt(question)
st.code(full_prompt)
status.update(label="Prompt computed")
else:
with st.spinner("Researching..."):
full_prompt = build_question_prompt(question)
# Send prompt to LLM.
with st.spinner("Thinking..."):
response_gen = get_response(full_prompt)
# Put everything after the spinners in a container to fix the
# ghost message bug.
with st.container():
# Stream the LLM response.
response = st.write_stream(response_gen)
# Add messages to chat history.
st.session_state.messages.append(
{"role": "user", "content": question})
st.session_state.messages.append(
{"role": "assistant", "content": response})
# Other stuff.
show_feedback_controls(len(st.session_state.messages) - 1)
send_telemetry(question=question, response=response)