-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli_args_examples.sh
executable file
·52 lines (35 loc) · 1.11 KB
/
cli_args_examples.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Three groups of parameters:
# 1. trainer_params
# 2. dataset_params
# 3. model_params
# python run_omega.py \
# mode='train,val,test' \
# trainer_params.gpus=[5]
# When you specify model_type, it sets
# model_params.model_config
# to the corresponding dict in Config.model_type_lookup()
# python run_omega.py \
# mode='train,val,test'\
# model_type='memory' \
# trainer_params.gpus=[5] \
# model_params.lr=1e-5 \
# You can change model_params.model_config values individually
# after specifying a model_type (or leaving it as baseline)
# python run_omega.py \
# mode='train,val,test'\
# model_type='memory' \
# trainer_params.gpus=[5] \
# model_params.lr=1e-5 \
# model_params.model_config.dropout=0.02
# dataset_params are changed indidually for each 'mode'
# python run_omega.py \
# mode='train,val,test'\
# model_type='memory' \
# trainer_params.gpus=[5] \
# dataset_params.train.shuffle=True
# dataset_params.val.shuffle=False
# You can add arguments that don't have defaults in Config
# (min_epochs is a Trainer param)
python run_omega.py \
mode='train,val,test' \
trainer_params.min_epochs=5