-
Notifications
You must be signed in to change notification settings - Fork 1
/
make_figures_ppo.py
106 lines (76 loc) · 3.04 KB
/
make_figures_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import sys
import json
from glob import glob
import pandas as pd
import multiprocessing as mp
CURR_DIR = os.path.dirname(os.path.abspath(__file__))
LIB_DIR = os.path.join(CURR_DIR, 'libs')
sys.path.append(LIB_DIR)
from experiment_utils import load_experiment
from gym_utils import load_robot
from figure_drawer import EvogymControllerDrawerPPO, pool_init_func
import custom_envs.parkour
from arguments.evogym_ppo import get_figure_args
def main():
args = get_figure_args()
poet_path = os.path.join(CURR_DIR, 'out', 'evogym_poet', args.name)
poet_args = load_experiment(poet_path)
niche_path = os.path.join(poet_path, 'niche', str(args.key), )
terrain_file = os.path.join(niche_path, 'terrain.json')
expt_path = os.path.join(niche_path, 'ppo_result')
expt_args = load_experiment(expt_path)
robot = load_robot(CURR_DIR, poet_args['robot'])
controller_files = {}
for trial_dire in glob(expt_path + '/*/'):
trial_num = os.path.basename(trial_dire[:-1])
if not trial_num.isdigit():
continue
history_file = os.path.join(trial_dire, 'history.csv')
history = pd.read_csv(history_file)
best_iteration = history.loc[history['reward'].idxmax(), 'iteration']
controller_file = os.path.join(trial_dire, 'controller', f'{best_iteration}.pt')
controller_files[trial_num] = controller_file
figure_path = os.path.join(expt_path, 'figure')
draw_kwargs = {}
if args.save_type=='gif':
draw_kwargs = {
'track': args.track_robot,
'resolution_scale': args.resolution_scale,
'deterministic': True
}
elif args.save_type=='jpg':
draw_kwargs = {
'interval': args.interval,
'resolution_scale': args.resolution_scale,
'start_timestep': args.start_timestep,
'timestep_interval': args.timestep_interval,
'distance_interval': args.distance_interval,
'blur': args.blur,
'blur_temperature': args.blur_temperature,
'display_timestep': args.display_timestep,
'draw_trajectory': args.draw_trajectory,
'deterministic': True
}
drawer = EvogymControllerDrawerPPO(
save_path=figure_path,
env_id=poet_args['task'],
robot=robot,
overwrite=not args.not_overwrite,
save_type=args.save_type, **draw_kwargs)
draw_function = drawer.draw
if not args.no_multi:
lock = mp.Lock()
pool = mp.Pool(args.num_cores, initializer=pool_init_func, initargs=(lock,))
jobs = []
for trial_num,controller_file in controller_files.items():
jobs.append(pool.apply_async(draw_function, args=(trial_num, terrain_file, controller_file)))
for job in jobs:
job.get(timeout=None)
else:
lock = mp.Lock()
lock = pool_init_func(lock)
for trial_num,controller_file in controller_files.items():
draw_function(trial_num, terrain_file, controller_file)
if __name__=='__main__':
main()