-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtmatrix.m
254 lines (194 loc) · 8.25 KB
/
tmatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
% T-matrix class
%
% T = tmatrix(fname) loads a T-matrix from file fname. The file is
% assumed to be of Matlab *.mat format.
%
% T = tmatrix(n,k,M) creates a T-matrix object of order n, wavenumber k,
% and matrix M. The origin is set to be the default [0;0;0].
%
% T = tmatrix(n,k,M,x) creates a T-matrix object of order n, wavenumber k,
% matrix M and origin x.
%
% T = tmatrix(n,k,M,x,str) creates a T-matrix object of order n, wavenumber k,
% matrix M, origin x and comment str.
%
% S = tmatrix(T) copies T into a new tmatrix object.
%
% Also:
%
% val = T.error() gives a measure of the error in the T-matrix based on a
% symmetry relation. See Equation (7.67) in P. A. Martin, Multiple
% Scattering: Interaction of Time-Harmonic Waves with N obstacles for
% details. This symmetry relation is valid for non-absorbing obstacles
% and may not be correct for absorbing particles (complex refractive
% index, or Robin boundary conditions).
%
% T.setOrigin(x) sets the origin of the T-matrix to x. This is a virtual
% origin that is only used in interactions with wave functions. This does
% not change the T-matrix.
%
% T.setComments(str) stores str as comments associated with the T-matrix.
%
% T.getComments() prints any comments associated with the T-matrix.
%
% val = T.getComments() returns any comments associated with the T-matrix
% in val.
%
% T.save(fname) saves the T-matrix in .mat format.
%
% Example:
%
% p = plane_wave(0,k);
% u = regularwavefunctionexpansion(n,0,p);
% T = tmatrix('sample.mat');
% v = T * u;
%
% Now v is a radiating wavefunction expansion for the scattered field
% induced by the plane wave p. The T-matrix is loaded from file
% sample.mat.
%
% See also: regularwavefunctionexpansion, radiatingwavefunctionexpansion,
% plane_wave, point_source, ghtmatrix.
%
% Stuart C. Hawkins - 20 April 2021
% Copyright 2019-2022 Stuart C. Hawkins
%
% This file is part of TMATROM3
%
% TMATROM3 is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TMATROM3 is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TMATROM3. If not, see <http://www.gnu.org/licenses/>.
classdef tmatrix < tmatrom3
properties
order
kwave
origin
matrix
comments
end
methods
%-----------------------------------------
% constructor
%-----------------------------------------
function self = tmatrix(varargin)
if nargin==1
if isa(varargin{1},'tmatrix')
% then we are copying a T-matrix
self.order = varargin{1}.order;
self.kwave = varargin{1}.kwave;
self.matrix = varargin{1}.matrix;
self.origin = varargin{1}.origin;
self.comments = varargin{1}.comments;
else
% we are loading a T-matrix
self.load(varargin{1})
end
elseif nargin==2
% then we are copying a T-matrix
% but changing the origin
self.order = varargin{1}.order;
self.kwave = varargin{1}.kwave;
self.matrix = varargin{1}.matrix;
self.origin = varargin{2};
self.comments = varargin{1}.comments;
elseif nargin==3
% then we are getting the T-matrix from a matrix with the
% default origin
self.order = varargin{1};
self.kwave = varargin{2};
self.matrix = varargin{3};
self.origin = [0;0;0];
elseif nargin==4
% then we are getting the T-matrix from a matrix
self.order = varargin{1};
self.kwave = varargin{2};
self.matrix = varargin{3};
self.origin = varargin{4};
elseif nargin==5
% then we are getting the T-matrix from a matrix and a
% comment is supplied
self.order = varargin{1};
self.kwave = varargin{2};
self.matrix = varargin{3};
self.origin = varargin{4};
self.comments = varargin{5};
end
end
%-----------------------------------------
% multiply tmatrix x regular wave expansion
%-----------------------------------------
function val = mtimes(self,expansion)
% - - - - - - - - - - - - - - - - -
% check the T-matrix and the wave
% expansion are compatible
% - - - - - - - - - - - - - - - - -
if ~isa(expansion,'regularwavefunctionexpansion')
error('expansion must be a regularwavefunctionexpansion')
end
if self.kwave ~= expansion.kwave
error('T-matrix and expansion wavenumbers do not match.')
end
if max(abs(self.origin-expansion.origin)) > 0
error('T-matrix and expansion centers do not match.')
end
if self.order ~= expansion.order
error('T-matrix and expansion orders do not match.')
end
% - - - - - - - - - - - - - - - - -
% do product
% - - - - - - - - - - - - - - - - -
% create a radiating wave function expansion with coefficients
% obtained by matrix multiplication with the T-matrix
val = radiatingwavefunctionexpansion(self.order,self.origin,...
self.kwave,self.matrix * expansion.coefficients(:));
end
%-----------------------------------------
% error check
%-----------------------------------------
% Check the symmetry relation Equation (7.67) in P. A. Martin,
% Multiple Scattering: Interaction of Time-Harmonic Waves with N
% obstacles for details.
function val = error(self,opts)
val = max(max(abs(self.matrix + self.matrix' ...
+ 2 * self.matrix' * self.matrix)));
if nargin>1
val = val / max(max(abs(self.matrix)));
end
end
%-----------------------------------------
% load
%-----------------------------------------
function load(self,fname)
% put the class properties into a struct
data = load(fname);
% ** in future released we might need to check the version here
% eg if class properties change **
% set the class properties from the struct
self.order = data.order;
self.kwave = data.kwave;
self.origin = data.origin;
self.matrix = data.matrix;
self.comments = data.comments;
end
%-----------------------------------------
% save
%-----------------------------------------
function save(self,fname)
% put the class properties in a struct
data = struct('order',self.order,'kwave',self.kwave,...
'origin',self.origin,'matrix',self.matrix,...
'version',self.version(),'comments',self.comments);
% save the struct
save(fname,'-struct','data');
end
end
end