forked from weigert/SimpleHydrology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleHydrology.cpp
359 lines (271 loc) · 11.1 KB
/
SimpleHydrology.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#include <TinyEngine/TinyEngine>
#include <TinyEngine/camera>
#include <TinyEngine/image>
#include "source/vertexpool.h"
#include "source/world.h"
#include "source/model.h"
#include <random>
mappool::pool<quad::cell> cellpool;
Vertexpool<Vertex> vertexpool;
int main( int argc, char* args[] ) {
assert(TINYENGINE_VERSION == "1.7");
Tiny::view.vsync = false;
Tiny::view.blend = false;
Tiny::window("Simple Hydrology", WIDTH, HEIGHT);
glDisable(GL_CULL_FACE);
//Initialize the World
World world;
if(argc >= 2){
World::SEED = std::stoi(args[1]);
srand(std::stoi(args[1]));
}
else {
World::SEED = time(NULL);
srand(World::SEED);
}
cellpool.reserve(quad::area);
vertexpool.reserve(quad::tilearea, quad::maparea);
World::map.init(vertexpool, cellpool, World::SEED);
//Vertexpool for Drawing Surface
for(auto& node: world.map.nodes){
updatenode(vertexpool, node);
}
// Initialize the Visualization
// Camera
cam::near = -800.0f;
cam::far = 800.0f;
cam::moverate = 10.0f;
cam::look = glm::vec3(quad::size/2, quad::mapscale/2, quad::size/2);
cam::roty = 60.0f;
cam::rot = 180.0f;
cam::init(3, cam::ORTHO);
cam::update();
//Setup Shaders
Shader defaultshader({"source/shader/default.vs", "source/shader/default.fs"}, {"in_Position", "in_Normal", "in_Tangent", "in_Bitangent"});
Shader defaultdepth({"source/shader/depth.vs", "source/shader/depth.fs"}, {"in_Position"});
Shader treeshader({"source/shader/tree.vs", "source/shader/tree.fs"}, {"in_Pos", "in_Model"});
Shader treedepth({"source/shader/treedepth.vs", "source/shader/treedepth.fs"}, {"in_Pos", "in_Model"});
Shader ssaoshader({"source/shader/ssao.vs", "source/shader/ssao.fs"}, {"in_Quad", "in_Tex"});
Shader imageshader({"source/shader/image.vs", "source/shader/image.fs"}, {"in_Quad", "in_Tex"});
Shader mapshader({"source/shader/map.vs", "source/shader/map.fs"}, {"in_Quad", "in_Tex"});
//Rendering Targets / Framebuffers
Billboard image(WIDTH, HEIGHT); //1200x800, color and depth
Texture shadowmap(8000, 8000, {GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_FLOAT});
Target shadow(8000, 8000);
shadow.bind(shadowmap, GL_DEPTH_ATTACHMENT);
Square2D flat;
// SSAO
Texture gPosition(WIDTH, HEIGHT, {GL_RGBA16F, GL_RGBA, GL_FLOAT});
Texture gNormal(WIDTH, HEIGHT, {GL_RGBA16F, GL_RGBA, GL_FLOAT});
Texture gColor(WIDTH, HEIGHT, {GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE});
Texture gDepth(WIDTH, HEIGHT, {GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE});
Target gBuffer(WIDTH, HEIGHT);
gBuffer.bind(gPosition, GL_COLOR_ATTACHMENT0);
gBuffer.bind(gNormal, GL_COLOR_ATTACHMENT1);
gBuffer.bind(gColor, GL_COLOR_ATTACHMENT2);
gBuffer.bind(gDepth, GL_DEPTH_ATTACHMENT);
Texture ssaotex(WIDTH, HEIGHT, {GL_RED, GL_RED, GL_FLOAT});
Target ssaofbo(WIDTH, HEIGHT);
ssaofbo.bind(ssaotex, GL_COLOR_ATTACHMENT0);
// generate sample kernel
// ----------------------
std::uniform_real_distribution<GLfloat> randomFloats(0.0, 1.0); // generates random floats between 0.0 and 1.0
std::default_random_engine generator;
std::vector<glm::vec3> ssaoKernel;
for (unsigned int i = 0; i < 64; ++i){
glm::vec3 sample(randomFloats(generator) * 2.0 - 1.0, randomFloats(generator) * 2.0 - 1.0, randomFloats(generator));
sample = glm::normalize(sample);
sample *= randomFloats(generator);
float scale = float(i) / 64.0f;
scale = 0.1f + scale*scale*(1.0f-0.1f);
sample *= scale;
ssaoKernel.push_back(sample);
}
// generate noise texture
// ----------------------
std::vector<glm::vec3> ssaoNoise;
for (unsigned int i = 0; i < 16; i++) {
glm::vec3 noise(randomFloats(generator) * 2.0 - 1.0, randomFloats(generator) * 2.0 - 1.0, 0.0f); // rotate around z-axis (in tangent space)
ssaoNoise.push_back(noise);
}
Texture noisetex(4, 4, {GL_RGBA32F, GL_RGB, GL_FLOAT}, &ssaoNoise[0]);
glBindTexture(GL_TEXTURE_2D, noisetex.texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
// Lets try an alternative tree model:
// a cone! Is visible from the top.
Model conemodel({"in_Pos", "in_Normal"});
std::vector<glm::vec4> conepos;
std::vector<glm::vec3> conenormal;
for(int i = 0; i < 16; i++){
float phiA = 2.0f*3.14159265f*(float)i/15.0f;
float phiB = 2.0f*3.14159265f*(float)(i+1)/15.0f;
conepos.push_back(vec4(sin(phiA), -1, cos(phiA), 1));
conepos.push_back(vec4(sin(phiB), -1, cos(phiB), 1));
conepos.push_back(vec4(0, 1, 0, 1));
conenormal.push_back(vec3(sin(phiA), 0.25, cos(phiA)));
conenormal.push_back(vec3(sin(phiB), 0.25, cos(phiB)));
conenormal.push_back(vec3(sin(0.5f*(phiA + phiB)), 0.25, cos(0.5f*(phiA + phiB))));
}
Buffer coneposbuf(conepos);
Buffer conenormalbuf(conenormal);
conemodel.bind<vec4>("in_Pos", &coneposbuf);
conemodel.bind<vec3>("in_Normal", &conenormalbuf);
conemodel.SIZE = 16*3;
//Trees as a Particle System
Instance treeparticle(&conemodel); //Particle system based on this model
Buffer modelbuf;
treeparticle.bind<glm::mat4>("in_Model", &modelbuf); //Update treeparticle system
std::vector<glm::mat4> treemodels;
//Texture for Hydrological Map Visualization
Texture normalMap(image::load("resource/normal.png"));
Texture momentumMap(image::make([&](const ivec2 p){
return vec4(0,0,0,0);
}, quad::res));
Texture dischargeMap(image::make([&](const ivec2 p){
return vec4(0,0,0,0);
}, quad::res));
glm::mat4 mapmodel = glm::mat4(1.0f);
mapmodel = glm::scale(mapmodel, glm::vec3(1,1,1)*glm::vec3((float)HEIGHT/(float)WIDTH, 1.0f, 1.0f));
//Visualization Hooks
Tiny::event.handler = [&](){
cam::handler();
if(!Tiny::event.press.empty() && Tiny::event.press.back() == SDLK_p)
paused = !paused;
if(!Tiny::event.press.empty() && Tiny::event.press.back() == SDLK_m)
viewmap = !viewmap;
if(!Tiny::event.press.empty() && Tiny::event.press.back() == SDLK_n)
viewmomentum = !viewmomentum;
};
Tiny::view.interface = [](){
ImGui::SetNextWindowSize(ImVec2(480, 260), ImGuiCond_Once);
ImGui::SetNextWindowPos(ImVec2(50, 470), ImGuiCond_Once);
ImGui::Begin("SimpleHydrology", NULL, ImGuiWindowFlags_NoResize);
ImGui::ColorEdit3("Flat Color", &flatColor[0]);
ImGui::ColorEdit3("Steep Color", &steepColor[0]);
ImGui::ColorEdit3("Water Color", &waterColor[0]);
ImGui::ColorEdit3("Sky Color", &skyCol[0]);
ImGui::ColorEdit3("Tree Color", &treeColor[0]);
ImGui::DragFloat("lightStrength", &lightStrength);
ImGui::DragFloat("ssaoradius", &ssaoradius);
if(ImGui::DragFloat3("lightPos", &lightPos[0])){
dv = glm::lookAt(worldcenter + normalize(vec3(lightPos.x, lightPos.y, lightPos.z)), worldcenter, glm::vec3(0,1,0));
bias = glm::mat4(
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
);
dvp = dp*dv;
dbvp = bias*dvp;
}
ImGui::End();
};
Tiny::view.pipeline = [&](){
// Render gBuffer geometry pass
gBuffer.target(vec3(0));
defaultshader.use();
defaultshader.uniform("proj", cam::proj);
defaultshader.uniform("view", cam::view);
defaultshader.texture("dischargeMap", dischargeMap);
defaultshader.texture("normalMap", normalMap);
defaultshader.uniform("flatColor", flatColor);
defaultshader.uniform("waterColor", waterColor);
defaultshader.uniform("steepColor", steepColor);
vertexpool.render(GL_TRIANGLES);
if(!Vegetation::plants.empty()){
glm::mat4 orient = glm::rotate(glm::mat4(1.0f), glm::radians(180.0f-cam::rot), glm::vec3(0.0, 1.0, 0.0));
treeshader.use();
treeshader.uniform("proj", cam::proj);
treeshader.uniform("view", cam::view);
treeshader.uniform("color", treeColor);
treeparticle.render(GL_TRIANGLES);
}
// SSAO Texture
ssaofbo.target(vec3(0));
ssaoshader.use();
for (unsigned int i = 0; i < 64; ++i)
ssaoshader.uniform("samples[" + std::to_string(i) + "]", ssaoKernel[i]);
ssaoshader.uniform("projection", cam::proj);
ssaoshader.texture("gPosition", gPosition);
ssaoshader.texture("gNormal", gNormal);
ssaoshader.texture("texNoise", noisetex);
ssaoshader.uniform("radius", ssaoradius);
flat.render();
//Render Shadowmap
shadow.target(); //Prepare Target
defaultdepth.use(); //Prepare Shader
defaultdepth.uniform("dvp", dvp);
vertexpool.render(GL_TRIANGLES); //Render Surface Model
if(!Vegetation::plants.empty()){
//Render the Trees as a Particle System
treedepth.use();
treedepth.uniform("dvp", dvp);
treeparticle.render(GL_TRIANGLES);
}
//Render Scene to Screen
Tiny::view.target(skyCol); //Prepare Target
imageshader.use();
imageshader.texture("gPosition", gPosition);
imageshader.texture("gNormal", gNormal);
imageshader.texture("gColor", gColor);
imageshader.texture("gDepth", gDepth);
imageshader.texture("ssaoTex", ssaotex);
imageshader.texture("shadowMap", shadowmap);
imageshader.texture("dischargeMap", dischargeMap);
imageshader.uniform("view", cam::view);
imageshader.uniform("dbvp", dbvp);
imageshader.uniform("lightCol", lightCol);
imageshader.uniform("skyCol", skyCol);
imageshader.uniform("lightPos", lightPos);
imageshader.uniform("lookDir", cam::pos);
imageshader.uniform("lightStrength", lightStrength);
flat.render();
//Render Map to Screen
if(viewmap){
mapshader.use();
mapshader.texture("momentumMap", momentumMap);
mapshader.texture("dischargeMap", dischargeMap);
mapshader.uniform("model", mapmodel);
mapshader.uniform("view", viewmomentum);
flat.render();
}
};
int n = 0;
Tiny::loop([&](){
if(paused)
return;
world.erode(quad::tilesize); //Execute Erosion Cycles
Vegetation::grow(); //Grow Trees
for(auto& node: world.map.nodes){
updatenode(vertexpool, node);
}
cout<<n++<<endl;
//Update the Tree Particle System
treemodels.clear();
for(auto& t: Vegetation::plants){
glm::mat4 model = glm::translate(glm::mat4(1.0f), glm::vec3(t.pos.x, t.size + quad::mapscale*world.map.get(t.pos)->get(t.pos)->height, t.pos.y));
model = glm::scale(model, glm::vec3(t.size));
treemodels.push_back(model);
}
modelbuf.fill(treemodels);
treeparticle.SIZE = treemodels.size(); // cout<<world.trees.size()<<endl;
// Update Maps
dischargeMap.raw(image::make([&](const ivec2 p){
double d = World::map.discharge(p);
// if(World::map.height(p) < 0.3)
// d = 1.0;
return vec4(waterColor, d);
}, quad::res));
momentumMap.raw(image::make([&](const ivec2 p){
auto node = world.map.get(p);
auto cell = node->get(p);
float mx = cell->momentumx;
float my = cell->momentumy;
return glm::vec4(0.5f*(1.0f+erf(mx)), 0.5f*(1.0f+erf(my)), 0.5f, 1.0);
}, quad::res));
});
return 0;
}