-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (67 loc) · 2.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import click
import torch
from torch import nn
from model import myawesomemodel
from data import mnist
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@click.group()
def cli():
"""Command line interface."""
pass
@click.command()
@click.option("--lr", default=1e-3, help="learning rate to use for training")
@click.option("--batch_size", default=256, help="batch size to use for training")
@click.option("--num_epochs", default=20, help="number of epochs to train for")
def train(lr, batch_size, num_epochs):
"""Train a model on MNIST."""
print("Training day and night")
print(lr)
print(batch_size)
# TODO: Implement training loop here
model = myawesomemodel.to(device)
train_set, _ = mnist()
train_dataloader = torch.utils.data.DataLoader(train_set, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loss_fn = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
for batch in train_dataloader:
optimizer.zero_grad()
x, y = batch
x = x.to(device)
y = y.to(device)
y_pred = model(x)
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()
print(f"Epoch {epoch} Loss {loss}")
torch.save(model, "model.pt")
@click.command()
@click.argument("model_checkpoint")
def evaluate(model_checkpoint):
"""Evaluate a trained model."""
print("Evaluating like my life dependends on it")
print(model_checkpoint)
# TODO: Implement evaluation logic here
model = torch.load(model_checkpoint)
_, test_set = mnist()
test_dataloader = torch.utils.data.DataLoader(
test_set, batch_size=64, shuffle=False
)
model.eval()
test_preds = [ ]
test_labels = [ ]
with torch.no_grad():
for batch in test_dataloader:
x, y = batch
x = x.to(device)
y = y.to(device)
y_pred = model(x)
test_preds.append(y_pred.argmax(dim=1).cpu())
test_labels.append(y.cpu())
test_preds = torch.cat(test_preds, dim=0)
test_labels = torch.cat(test_labels, dim=0)
print((test_preds == test_labels).float().mean())
cli.add_command(train)
cli.add_command(evaluate)
if __name__ == "__main__":
cli()