-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
131 lines (96 loc) · 4.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import json
import pathlib
import os
import tensorflow as tf
from models import *
from metrics import get_metric
# from .metrics import get_metric_experimental
# Move this to Arguments later
model_save_dir = pathlib.Path('./saved-models')
def get_test_dataset(input_size=(256, 256, 3), imgs=None, labels=None, batch_size=1, cache=False):
'''
Prepare DataLoader
The dataset is catered towards (input, target)=(IMG, IMG) pairs.
Input and Target images are put in separate folder
'''
if imgs is None or labels is None:
raise ValueError('Invalid Dataset directory paths provided')
if not isinstance(imgs, pathlib.Path):
imgs = pathlib.Path(imgs)
if not isinstance(labels, pathlib.Path):
labels = pathlib.Path(labels)
def _get_label_path(path):
file_name = tf.strings.split(path, '/')[-1]
# ext = tf.strings.split(file_name, '.')[-1]
# Labels in Reside dataset are in png format
# Reside-Dehaze dataset specific file-naming exploit
file_id = tf.strings.split(file_name, '_')[0]
return tf.strings.join([str(labels)+'/', file_id, '.png'])
#return tf.strings.format('%s/{}.{}'%str(labels), (file_id, ext))
def _get_img(path):
# Read image path and return TF tensor
img = tf.io.read_file(path, name='Read-Image')
img = tf.io.decode_image(img, channels=3, dtype=tf.dtypes.float32, name='Decode-Image', expand_animations=False)
return img
def _process_path(file_path):
label_path = _get_label_path(file_path)
label = _get_img(label_path)
img = _get_img(file_path)
return img, label
list_ds = tf.data.Dataset.list_files(str(imgs/'*'))
ds = list_ds.map(_process_path, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Preprocessing
def _preprocess_images(img, label):
'''
* Concatenate img and label along the channels axis for consistent random cropping
* Convert Image value range from [0,1] to [-1, 1]
* Random Resize Image and Crop (Random Jitter)
'''
combined = tf.concat([img, label], axis=2)
combined = combined*2 - 1
combined = tf.image.resize(combined, (286, 286), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
combined = tf.image.random_crop(combined, (256, 256, 6))
img = combined[:,:,:3]
label = combined[:,:,3:]
# Model requires label also to be passed as input
return (img, label)
ds = ds.map(lambda img, label: _preprocess_images(img, label), num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Batching and Optimizations
if cache:
ds = ds.cache()
ds = ds.shuffle(buffer_size=1000)
ds = ds.batch(batch_size)
ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return ds
def test(dataset, input_size=(256, 256,3), load_name=None):
if load_name is not None and not os.path.exists(model_save_dir/load_name):
raise ValueError('No saved model with the name \'%s\' exists!' % load_name)
load_path = None
if load_name is not None:
load_path = model_save_dir/load_name
model = build_inference_model(input_size=input_size, load_path=load_path)
model.trainable = False
opt_adam = tf.keras.optimizers.Adam(
learning_rate=0.00001, beta_1=0.9, beta_2=0.999
)
model.compile(optimizer=opt_adam, loss=recon_loss(), metrics=[
get_metric('psnr'),
get_metric('ssim')
])
model.summary()
results = model.evaluate(dataset, return_dict=True)
print(results)
if load_path is not None:
with open(load_path/'test-logs.json', 'w') as fp:
json.dump(results, fp, sort_keys=True, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training Args')
parser.add_argument('data_path', metavar='I', default='../dataset/test/imgs/', help='Path to the test directory containing input images')
parser.add_argument('label_path', metavar='L', default='../dataset/test/labels/', help='Path to the test directory containing labels')
parser.add_argument('--load-name', default=None, dest='load_name', help='Name of already saved model to load')
parser.add_argument('--batch-size', type=int, default=1, dest='batch_size', help='Number of images fed to model at once')
parser.add_argument('--cache-ds', action='store_true', dest='cache', help='Whether to cache TF Dataset')
args = parser.parse_args()
dataset = get_test_dataset(input_size=(256, 256,3), imgs=args.data_path, labels=args.label_path, batch_size=args.batch_size, cache=args.cache)
test(dataset, input_size=(256, 256,3), load_name=args.load_name)