forked from TARANG0503/DSA-Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0-1 Knapsack Problem.java
69 lines (53 loc) · 1.29 KB
/
0-1 Knapsack Problem.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// Here is the top-down approach of
// dynamic programming
class Main{
// A utility function that returns
// maximum of two integers
static int max(int a, int b)
{
return (a > b) ? a : b;
}
// Returns the value of maximum profit
static int knapSackRec(int W, int wt[],
int val[], int n,
int [][]dp)
{
// Base condition
if (n == 0 || W == 0)
return 0;
if (dp[n][W] != -1)
return dp[n][W];
if (wt[n - 1] > W)
// Store the value of function call
// stack in table before return
return dp[n][W] = knapSackRec(W, wt, val,
n - 1, dp);
else
// Return value of table after storing
return dp[n][W] = max((val[n - 1] +
knapSackRec(W - wt[n - 1], wt,
val, n - 1, dp)),
knapSackRec(W, wt, val,
n - 1, dp));
}
static int knapSack(int W, int wt[], int val[], int N)
{
// Declare the table dynamically
int dp[][] = new int[N + 1][W + 1];
// Loop to initially filled the
// table with -1
for(int i = 0; i < N + 1; i++)
for(int j = 0; j < W + 1; j++)
dp[i][j] = -1;
return knapSackRec(W, wt, val, N, dp);
}
// Driver Code
public static void main(String [] args)
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int N = val.length;
System.out.println(knapSack(W, wt, val, N));
}
}