-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectorAdd.cu
249 lines (205 loc) · 7.83 KB
/
vectorAdd.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Vector addition: C = A + B.
*
* This sample is a very basic sample that implements element by element
* vector addition. It is the same as the sample illustrating Chapter 2
* of the programming guide with some additions like error checking.
*/
#include <stdio.h>
#include <iostream>
#include <chrono>
using namespace std::chrono;
typedef std::chrono::high_resolution_clock Clock;
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
#include <helper_cuda.h>
/**
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C. The 3 vectors have the same
* number of elements numElements.
*/
__global__ void vectorAdd_gpu(const float *A, const float *B, float *C,
int numElements) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numElements) {
C[i] = A[i] + B[i] + 0.0f;
}
}
/**
* CPU code
*
* Computes the vector addition of A and B into C. The 3 vectors have the same
* number of elements numElements.
*/
void vectorAdd_cpu(const float *A, const float *B, float *C,
int numElements)
{
for (int i=0;i<numElements;i++)
C[i] = A[i] + B[i] + 0.0f;
}
/**
* Host main routine
*/
int main(void) {
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 500000;
size_t size = numElements * sizeof(float);
printf("[Vector addition of %d elements of type float]\n", numElements);
// cpu variables
float *cpu_A = (float *)malloc(size);
float *cpu_B = (float *)malloc(size);
float *cpu_C = (float *)malloc(size);
// Allocate the host input vector A
float *gpu_Host_A = (float *)malloc(size);
// Allocate the host input vector B
float *gpu_Host_B = (float *)malloc(size);
// Allocate the host output vector C
float *gpu_Host_C = (float *)malloc(size);
// Verify that allocations succeeded
if (gpu_Host_A == NULL || gpu_Host_B == NULL || gpu_Host_C == NULL) {
fprintf(stderr, "Failed to allocate host vectors!\n");
exit(EXIT_FAILURE);
}
// Initialize the host input vectors
for (int i = 0; i < numElements; ++i) {
gpu_Host_A[i] = cpu_A[i] = rand() / (float)RAND_MAX;
gpu_Host_B[i] = cpu_B[i] = rand() / (float)RAND_MAX;
}
// Allocate the device input vector A
float *gpu_Device_A = NULL;
err = cudaMalloc((void **)&gpu_Device_A, size);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Allocate the device input vector B
float *gpu_Device_B = NULL;
err = cudaMalloc((void **)&gpu_Device_B, size);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Allocate the device output vector C
float *gpu_Device_C = NULL;
err = cudaMalloc((void **)&gpu_Device_C, size);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
auto cpu_start = Clock::now();
vectorAdd_cpu(cpu_A,cpu_B,cpu_C, numElements);
auto cpu_end = Clock::now();
std::cout << ">>> VectorAdd_cpu: "
<< duration_cast<nanoseconds>(cpu_end - cpu_start).count()
<< " nano seconds\n";
// Copy the host input vectors A and B in host memory to the device input
// vectors in
// device memory
printf("Copy input data from the host memory to the CUDA device\n");
err = cudaMemcpy(gpu_Device_A, gpu_Host_A, size, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr,
"Failed to copy vector A from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaMemcpy(gpu_Device_B, gpu_Host_B, size, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr,
"Failed to copy vector B from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid,
threadsPerBlock);
auto gpu_start = Clock::now();
vectorAdd_gpu<<<blocksPerGrid, threadsPerBlock>>>(gpu_Device_A, gpu_Device_B, gpu_Device_C, numElements);
auto gpu_end = Clock::now();
std::cout << ">>> VectorAdd_gpu: "
<< duration_cast<nanoseconds>(gpu_end - gpu_start).count()
<< " nano seconds\n";
err = cudaGetLastError();
if (err != cudaSuccess) {
fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Copy the device result vector in device memory to the host result vector
// in host memory.
printf("Copy output data from the CUDA device to the host memory\n");
err = cudaMemcpy(gpu_Host_C, gpu_Device_C, size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr,
"Failed to copy vector C from device to host (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Verify that the result vector is correct
for (int i = 0; i < numElements; ++i) {
if (fabs(gpu_Host_A[i] + gpu_Host_B[i] - gpu_Host_C[i]) > 1e-5) {
fprintf(stderr, "Result verification failed at element %d!\n", i);
exit(EXIT_FAILURE);
}
}
printf("Test PASSED\n");
// Free device global memory
err = cudaFree(gpu_Device_A);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to free device vector A (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(gpu_Device_B);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to free device vector B (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(gpu_Device_C);
if (err != cudaSuccess) {
fprintf(stderr, "Failed to free device vector C (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Free host memory
free(gpu_Host_A);
free(gpu_Host_B);
free(gpu_Host_C);
printf("Done\n");
return 0;
}