-
Notifications
You must be signed in to change notification settings - Fork 0
/
11-lesson.tex
64 lines (62 loc) · 1.52 KB
/
11-lesson.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\section*{Derivative Review. Chain Rule}
Basic Formulas
\begin{equation*}
\begin{aligned}
\frac{d}{dx} f(g(x)) &= \frac{df}{dx}(g(x)))\frac{d}{dx} g(x) \\
\noalign{\vspace{1 em}or if}
h(x) &= f(g(x)) \\
\noalign{then}
h'(x) &= f^\prime(g(x))g'(x) \\
\end{aligned}
\end{equation*}
\begin{questions}
\question
Calculate the derivative of $f(x)=\ln (x^3)$ two ways. Use the logarithm property and chain rule
\begin{solution}[1.5in]
Logarithms
$$f(x) = 3 \ln(x)$$
so
$$f^\prime(x)=\frac{3}{x}$$
Chain Rule
$$f(x)=g(h(x))$$
where $g(x)=\ln(x)$ and $h(x)=x^3$
$$g'(x) = \frac{1}{x}$$
$$h'(x) = 3x^2$$
so
$$f'(x)=g'(h(x))h'(x) = \frac{1}{x^3}\cdot 3x^2 = \frac{3x^2}{x^3} = \frac{3}{x}$$
\end{solution}
\question
Calculate the derviative of $e^{x^2}$
\begin{solution}[1.5in]
$$f(x)=e^{x}$$
$$g(x)=x^2$$
$$f'(x)=e^{x}$$
$$g'(x)=2x$$
so
$$h'(x) = 2xe^{x^2}$$
\end{solution}
\question
Given the table
\begin{tabular}{c|cccccc}
\hline
& $f(x)$ & $f^\prime(x)$ & $g(x)$ & $g'(x)$ \\
\hline
1& 1 & 3 & 5 & 4 \\
\hline
3& 9 & 7 & -2 & 3 \\
\hline
5 &3 & 6 & 7 & 5 \\
\hline
\end{tabular}
\vspace{1em}
\begin{parts}
\part Calculate $h'(1)$ where $h(x) = f(g(x))$
\begin{solution}[.5in]
$h'(x)=f'(g(x))g'(x)$ so $h'(1)= f'(5)g'(1)=6\cdot 4=24$
\end{solution}
\part Calculate $h'(5)$ where $h(x) = g(f(x))$.
\begin{solution}[.5in]
$h'(x)=g'(f(x))f'(x)$ so $h'(5)= g'(3)f'(5)=3\cdot 6=18$
\end{solution}
\end{parts}
\end{questions}