-
Notifications
You must be signed in to change notification settings - Fork 0
/
13-lesson.tex
29 lines (28 loc) · 940 Bytes
/
13-lesson.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
\section*{Derivative Review. Trig Functions}
Basic Formulas
\begin{equation*}
\begin{aligned}
\frac{d}{dx} \sin x &= \cos x \\
\frac{d}{dx} \cos x &= \sin x \\
\frac{d}{dx} \tan x &= \frac{\sin x}{\cos x} \\
\noalign{Use quotient rule}
&= \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x} \\
&= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\
\noalign{Use pythogorean trig identity $\sin^2 + \cos^2 =1$}
&= \frac{1}{\cos^2 x}=\sec^2 x\\
\end{aligned}
\end{equation*}
\begin{questions}
\question
Calculate the derivative of $\sin x \cos x$ two ways: use product rule and use the trig identity $\sin (2x) = 2\sin x\cos x$. Do you get the same answer?
\begin{solution}[1.5in]
\end{solution}
\question
Calculate the derviative of $\csc x$ hint $\csc = \frac{1}{\sin}$
\begin{solution}[1.5in]
\end{solution}
\question
Calculate the derviative of $\cos (x^2+1)$
\begin{solution}[1.5in]
\end{solution}
\end{questions}