-
Notifications
You must be signed in to change notification settings - Fork 18
/
kernelgraph.h
275 lines (247 loc) · 9.72 KB
/
kernelgraph.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#pragma once
#include<vector>
#include<algorithm>
#include<queue>
#include<stdlib.h>
#include"config.h"
#include"data.h"
#include<random>
#include<unordered_set>
#include"astar_accelerator.h"
#include"warp_astar_accelerator.h"
class GraphWrapper{
public:
virtual void add_vertex(idx_t vertex_id,std::vector<std::pair<int,value_t>>& point) = 0;
virtual void search_top_k(const std::vector<std::pair<int,value_t>>& query,int k,std::vector<idx_t>& result) = 0;
virtual void dump(std::string file = "bfsg.graph") = 0;
virtual void load(std::string file = "bfsg.graph") = 0;
virtual void search_top_k_batch(const std::vector<std::vector<std::pair<int,value_t>>>& queries,int k,std::vector<std::vector<idx_t>>& results){};
virtual ~GraphWrapper(){};
};
template<const int dist_type>
class KernelFixedDegreeGraph : public GraphWrapper{
private:
const int degree = 15;//255;//31;
const int flexible_degree = degree * 2 + 1;
const int vertex_offset_shift = 5;//8;//5;
std::vector<idx_t> edges;
std::vector<dist_t> edge_dist;
Data* data;
std::mt19937_64 rand_gen = std::mt19937_64(1234567);//std::random_device{}());
void rank_and_switch_ordered(idx_t v_id,idx_t u_id){
//We assume the neighbors of v_ids in edges[offset] are sorted
//by the distance to v_id ascendingly when it is full
//NOTICE: before it is full, it is unsorted
auto curr_dist = pair_distance(v_id,u_id);
auto offset = v_id << vertex_offset_shift;
//We assert edges[offset] > 0 here
if(curr_dist >= edge_dist[offset + edges[offset]]){
// printf("[DEBUG] skip switch, degree %zu, nodes: ",edges[offset]);
// for(int i = 0;i < edges[offset];++i)
// printf("(%d,%f) ",)
return;
}
edges[offset + edges[offset]] = u_id;
edge_dist[offset + edges[offset]] = curr_dist;
for(size_t i = offset + edges[offset] - 1;i > offset;--i){
if(edge_dist[i] > edge_dist[i + 1]){
std::swap(edges[i],edges[i + 1]);
std::swap(edge_dist[i],edge_dist[i + 1]);
}else{
break;
}
}
}
void rank_and_switch(idx_t v_id,idx_t u_id){
rank_and_switch_ordered(v_id,u_id);
//TODO:
//Implement an unordered version to compare with
}
template<class T>
dist_t distance(idx_t a,T& b){
if(dist_type == 0)
return data->l2_distance(a,b);
else if(dist_type == 1)
return data->negative_inner_prod_distance(a,b);
else
return data->negative_cosine_distance(a,b);
}
void compute_distance_naive(size_t offset,std::vector<dist_t>& dists){
dists.resize(edges[offset]);
auto degree = edges[offset];
for(int i = 0;i < degree;++i){
dists[i] = distance(offset >> vertex_offset_shift,edges[offset + i + 1]);
}
}
void compute_distance(size_t offset,std::vector<dist_t>& dists){
compute_distance_naive(offset,dists);
}
template<class T>
dist_t pair_distance_naive(idx_t a,T& b){
return distance(a,b);
}
template<class T>
dist_t pair_distance(idx_t a,T& b){
return pair_distance_naive(a,b);
}
void qsort(size_t l,size_t r){
auto mid = (l + r) >> 1;
int i = l,j = r;
auto k = edge_dist[mid];
do{
while(edge_dist[i] < k) ++i;
while(k < edge_dist[j]) --j;
if(i <= j){
std::swap(edge_dist[i],edge_dist[j]);
std::swap(edges[i],edges[j]);
++i;
--j;
}
}while(i <= j);
if(i < r)qsort(i,r);
if(l < j)qsort(l,j);
}
void rank_edges(size_t offset){
std::vector<dist_t> dists;
compute_distance(offset,dists);
for(int i = 0;i < dists.size();++i)
edge_dist[offset + i + 1] = dists[i];
qsort(offset + 1,offset + dists.size());
//TODO:
//use a heap in the edge_dist
}
void add_edge(idx_t v_id,idx_t u_id){
auto offset = v_id << vertex_offset_shift;
if(edges[offset] < flexible_degree){
++edges[offset];
edges[offset + edges[offset]] = u_id;
if(edges[offset] == flexible_degree){
rank_edges(offset);
}
}else{
rank_and_switch(v_id,u_id);
}
}
public:
long long total_explore_cnt = 0;
int total_explore_times = 0;
KernelFixedDegreeGraph(Data* data) : data(data){
auto num_vertices = data->max_vertices();
edges = std::vector<idx_t>(num_vertices << vertex_offset_shift);
edge_dist = std::vector<dist_t>(num_vertices << vertex_offset_shift);
}
void add_vertex(idx_t vertex_id,std::vector<std::pair<int,value_t>>& point){
std::vector<idx_t> neighbor;
search_top_k(point,degree*10,neighbor);
int num_neighbors = degree < neighbor.size() ? degree : neighbor.size();
auto offset = vertex_id << vertex_offset_shift;
edges[offset] = num_neighbors;
// TODO:
// it is possible to save this space --- edges[offset]
// by set the last number in the range as
// a large number - current degree
for(int i = 0;i < neighbor.size() && i < degree;++i){
edges[offset + i + 1] = neighbor[i];
}
rank_edges(offset);
for(int i = 0;i < neighbor.size() && i < degree;++i){
add_edge(neighbor[i],vertex_id);
}
}
void astar_multi_start_search(const std::vector<std::pair<int,value_t>>& query,int k,std::vector<idx_t>& result){
std::priority_queue<std::pair<dist_t,idx_t>,std::vector<std::pair<dist_t,idx_t>>,std::greater<std::pair<dist_t,idx_t>>> q;
const int num_start_point = 1;//3;
auto converted_query = data->organize_point(query);
std::unordered_set<idx_t> visited;
for(int i = 0;i < num_start_point && i < data->curr_vertices();++i){
auto start = 0;//rand_gen() % data->curr_vertices();
if(visited.count(start))
continue;
visited.insert(start);
q.push(std::make_pair(pair_distance_naive(start,converted_query),start));
}
std::priority_queue<std::pair<dist_t,idx_t>> topk;
const int max_step = 1000000;
dist_t min_dist = 1e100;
int explore_cnt = 0;
for(int iter = 0;iter < max_step && !q.empty();++iter){
auto now = q.top();
if(topk.size() == k && topk.top().first < now.first){
break;
}
++explore_cnt;
min_dist = std::min(min_dist,now.first);
q.pop();
topk.push(now);
if(topk.size() > k)
topk.pop();
auto offset = now.second << vertex_offset_shift;
auto degree = edges[offset];
for(int i = 0;i < degree;++i){
auto start = edges[offset + i + 1];
if(visited.count(start))
continue;
q.push(std::make_pair(pair_distance_naive(start,converted_query),start));
auto tmp = pair_distance_naive(start,converted_query);
visited.insert(start);
}
}
total_explore_cnt += explore_cnt;
++total_explore_times;
result.resize(topk.size());
int i = result.size() - 1;
while(!topk.empty()){
result[i] = (topk.top().second);
topk.pop();
--i;
}
}
void search_top_k(const std::vector<std::pair<int,value_t>>& query,int k,std::vector<idx_t>& result){
astar_multi_start_search(query,k,result);
}
void print_stat(){
auto n = data->max_vertices();
size_t sum = 0;
std::vector<size_t> histogram(2 * degree + 1,0);
for(size_t i = 0;i < n;++i){
sum += edges[i << vertex_offset_shift];
int tmp = edges[i << vertex_offset_shift];
if(tmp > 2 * degree + 1)
fprintf(stderr,"[ERROR] node %zu has %d degree\n",i,tmp);
++histogram[edges[i << vertex_offset_shift]];
if(tmp != degree)
fprintf(stderr,"[INFO] %zu has degree %d\n",i,tmp);
}
fprintf(stderr,"[INFO] #vertices %zu, avg degree %f\n",n,sum * 1.0 / n);
std::unordered_set<idx_t> visited;
fprintf(stderr,"[INFO] degree histogram:\n");
for(int i = 0;i <= 2 * degree + 1;++i)
fprintf(stderr,"[INFO] %d:\t%zu\n",i,histogram[i]);
}
void print_edges(int x){
for(int i = 0;i < x;++i){
size_t offset = i << vertex_offset_shift;
int degree = edges[offset];
fprintf(stderr,"%d (%d): ",i,degree);
for(int j = 1;j <= degree;++j)
fprintf(stderr,"(%zu,%f) ",edges[offset + j],edge_dist[offset + j]);
fprintf(stderr,"\n");
}
}
void dump(std::string file = "bfsg.graph"){
FILE* fp = fopen(file.c_str(),"wb");
auto num_vertices = data->max_vertices();
fwrite(&edges[0],sizeof(edges[0]) * (num_vertices << vertex_offset_shift),1,fp);
fclose(fp);
}
void load(std::string file = "bfsg.graph"){
FILE* fp = fopen(file.c_str(),"rb");
auto num_vertices = data->max_vertices();
auto cnt = fread(&edges[0],sizeof(edges[0]) * (num_vertices << vertex_offset_shift),1,fp);
fclose(fp);
}
void search_top_k_batch(const std::vector<std::vector<std::pair<int,value_t>>>& queries,int k,std::vector<std::vector<idx_t>>& results){
WarpAStarAccelerator::astar_multi_start_search_batch(queries,k,results,data->get(0),edges.data(),vertex_offset_shift,data->max_vertices(),data->get_dim());
//fprintf(stderr,"finished one batch\n");
}
};