-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
168 lines (142 loc) · 7.48 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
"""
@author:sunwill
predict the testing data
"""
from train import *
from data_process import *
height = 4000
width = 15106
testing_file_2015 = 'test_2015.txt'
testing_file_2017 = 'test_2017.txt'
model_list = ['resnet_model.h5']
def main(argv=None):
pred_2015_summary = np.empty(shape=(2, height, width))
pred_2017_summary = np.empty(shape=(2, height, width))
i = 0
for model_name in model_list:
for image_size in [160, 224, 256]:
if model_name == 'resnet_model.h5' and image_size == 160:continue
print('images size:', image_size)
testing_dir = './data_{}/test_quarterfinals/'.format(image_size)
img_list_2015 = []
with open('./data_{}/test_quarterfinals/test_2015.txt'.format(image_size)) as f:
lines = f.readlines()
for line in lines:
img_list_2015.append((line.split('/')[1].strip()).split('.')[0])
img_list_2017 = []
with open('./data_{}/test_quarterfinals/test_2017.txt'.format(image_size)) as f:
lines = f.readlines()
for line in lines:
img_list_2017.append((line.split('/')[1].strip()).split('.')[0])
assert len(img_list_2015) == len(img_list_2017)
## 准备数据
testSet_2015 = Dataset_reader(dataset_dir=testing_dir,
file_name=testing_file_2015,
image_size=image_size,
image_channel=image_channel,
label_channel=label_channel,
test=True
)
testSet_2017 = Dataset_reader(dataset_dir=testing_dir,
file_name=testing_file_2017,
image_size=image_size,
image_channel=image_channel,
label_channel=label_channel,
test=True
)
test_images_2015 = np.array(testSet_2015.get_all_data(label=False))
test_images_2017 = np.array(testSet_2017.get_all_data(label=False))
assert test_images_2015.shape[0] == test_images_2017.shape[0]
print('Test_images:', test_images_2015.shape, test_images_2015.max())
if os.path.exists(save_path + model_name):
if 'deeplab' in model_name:
## 加载模型
model = DeeplabV2(input_shape=(image_size, image_size, image_channel),
classes=label_channel,
weights=None,
)
else:
model = make_fcn_resnet(input_shape=(image_size, image_size, image_channel),
nb_labels=label_channel,
use_pretraining=True,
freeze_base=False
)
model.load_weights(save_path + model_name)
print 'model restored from ', save_path, ' model name:', model_name
## 预测阶段
pred_2015 = model.predict(test_images_2015, batch_size=4, verbose=1)
pred_2017 = model.predict(test_images_2017, batch_size=4, verbose=1)
pred_2015_summary[i] = submit_formation(pred_2015[:, :, :, 1], img_list_2015,
image_size=image_size)
pred_2017_summary[i] = submit_formation(pred_2017[:, :, :, 1], img_list_2017,
image_size=image_size)
i += 1
assert pred_2015_summary.shape == pred_2017_summary.shape
print pred_2015_summary.shape
print('summary the result...')
pred_2015 = pred_2015_summary.mean(axis=0)
pred_2017 = pred_2017_summary.mean(axis=0)
print('prediction 2015:', pred_2015.shape, pred_2015.max())
print('prediction 2017:', pred_2017.shape, pred_2017.max())
## 将预测结果保存
# if not os.path.exists(result_dir + '2015/'):
# os.makedirs(result_dir + '2015/')
# if not os.path.exists(result_dir + '2017/'):
# os.makedirs(result_dir + '2017/')
# for i in range(test_images_2015.shape[0]):
# misc.imsave(os.path.join(result_dir + '2015/', img_list_2015[i] + ".png"), pred_2015[i][:, :, 1])
# misc.imsave(os.path.join(result_dir + '2017/', img_list_2017[i] + ".png"), pred_2017[i][:, :, 1])
# print('prediction has saved!')
## 将预测结果根据区域名字拼接成大数组
# submit_array_2015 = submit_formation((pred_2015 > 0.8).astype(np.uint8), img_list_2015, image_size=image_size)
# submit_array_2017 = submit_formation((pred_2017 > 0.8).astype(np.uint8), img_list_2017, image_size=image_size)
pred_2015 = (pred_2015 > 0.5).astype(np.uint8)
pred_2017 = (pred_2017 > 0.5).astype(np.uint8)
assert ((pred_2015 > pred_2015.min()) & (pred_2015 < pred_2015.max())).sum() == 0
assert ((pred_2017 > pred_2017.min()) & (pred_2017 < pred_2017.max())).sum() == 0
# tiff.imsave('pred_2015_building.tiff', pred_2015)
# tiff.imsave('pred_2017_building.tiff', pred_2017)
diff = ((pred_2017 == 1) & (pred_2015 == 0)).astype(np.uint8)
print diff.shape, diff.mean(), diff.max()
tiff.imsave('submit_resnet_model.tiff', diff)
print('Predicting process have done!')
def submit_formation(pred, name_list, image_size):
rows = 0
cols = 0
for img in name_list:
rows = max(rows, int(img.split("_")[0]) + 1)
cols = max(cols, int(img.split("_")[1]) + 1)
_width = max(cols*image_size, width) # 大图片的宽度
_height = max(rows*image_size, height) # 大图片的高度
toarray = np.zeros(shape=(_height, _width), dtype=pred.dtype)
for i in range(pred.shape[0]):
name = name_list[i]
x = int(name.split('_')[0])
y = int(name.split('_')[1])
toarray[x*image_size:(x+1)*image_size,
y*image_size:(y+1)*image_size] = pred[i]
return toarray[:height, :width]
if __name__ == "__main__":
## 分割数据
# file_name = './original_data/quarterfinals_2015.tif'
# im_2015 = tiff.imread(file_name).transpose([1, 2, 0])
# file_name = './original_data/quarterfinals_2017.tif'
# im_2017 = tiff.imread(file_name).transpose([1, 2, 0])
#
# split_image(im_2015, './data_{}/test_quarterfinals/images/2015/'.format(image_size), image_size)
# split_image(im_2017, './data_{}/test_quarterfinals/images/2017/'.format(image_size), image_size)
#
# ## 创建测试数据
# images_list_2015 = np.array(os.listdir('./data_{}/test_quarterfinals/images/2015/'.format(image_size)))
# images_list_2017 = np.array(os.listdir('./data_{}/test_quarterfinals/images/2017/'.format(image_size)))
# reg = r'[0-9]{0,3}_[0-9]{0,3}_[0-9]{3}_.jpg'
# with open('./data_{}/test_quarterfinals/test_2015.txt'.format(image_size), 'w') as f:
# for line in images_list_2015:
# if re.match(reg, line):
# f.write('2015/'+line+'\n')
# with open('./data_{}/test_quarterfinals/test_2017.txt'.format(image_size), 'w') as f:
# for line in images_list_2015:
# if re.match(reg, line):
# f.write('2017/'+line+'\n')
tf.app.run()