-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.c
625 lines (550 loc) · 12.4 KB
/
utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
Copyright 2016 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "utils.h"
#include "ch.h"
#include "hal.h"
#include <math.h>
#include <string.h>
// Private variables
static volatile int sys_lock_cnt = 0;
void utils_step_towards(float *value, float goal, float step) {
if (*value < goal) {
if ((*value + step) < goal) {
*value += step;
} else {
*value = goal;
}
} else if (*value > goal) {
if ((*value - step) > goal) {
*value -= step;
} else {
*value = goal;
}
}
}
float utils_calc_ratio(float low, float high, float val) {
return (val - low) / (high - low);
}
/**
* Make sure that 0 <= angle < 360
*
* @param angle
* The angle to normalize.
*/
void utils_norm_angle(float *angle) {
*angle = fmodf(*angle, 360.0);
if (*angle < 0.0) {
*angle += 360.0;
}
}
/**
* Make sure that -pi <= angle < pi,
*
* TODO: Maybe use fmodf instead?
*
* @param angle
* The angle to normalize in radians.
* WARNING: Don't use too large angles.
*/
void utils_norm_angle_rad(float *angle) {
while (*angle < -M_PI) {
*angle += 2.0 * M_PI;
}
while (*angle > M_PI) {
*angle -= 2.0 * M_PI;
}
}
int utils_truncate_number(float *number, float min, float max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < min) {
*number = min;
did_trunc = 1;
}
return did_trunc;
}
int utils_truncate_number_int(int *number, int min, int max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < min) {
*number = min;
did_trunc = 1;
}
return did_trunc;
}
int utils_truncate_number_abs(float *number, float max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < -max) {
*number = -max;
did_trunc = 1;
}
return did_trunc;
}
float utils_map(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
int utils_map_int(int x, int in_min, int in_max, int out_min, int out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
/**
* Truncate absolute values less than tres to zero. The value
* tres will be mapped to 0 and the value max to max.
*/
void utils_deadband(float *value, float tres, float max) {
if (fabsf(*value) < tres) {
*value = 0.0;
} else {
float k = max / (max - tres);
if (*value > 0.0) {
*value = k * *value + max * (1.0 - k);
} else {
*value = -(k * -*value + max * (1.0 - k));
}
}
}
/**
* Get the difference between two angles. Will always be between -180 and +180 degrees.
* @param angle1
* The first angle
* @param angle2
* The second angle
* @return
* The difference between the angles
*/
float utils_angle_difference(float angle1, float angle2) {
// utils_norm_angle(&angle1);
// utils_norm_angle(&angle2);
//
// if (fabsf(angle1 - angle2) > 180.0) {
// if (angle1 < angle2) {
// angle1 += 360.0;
// } else {
// angle2 += 360.0;
// }
// }
//
// return angle1 - angle2;
// Faster in most cases
float difference = angle1 - angle2;
while (difference < -180.0) difference += 2.0 * 180.0;
while (difference > 180.0) difference -= 2.0 * 180.0;
return difference;
}
/**
* Get the difference between two angles. Will always be between -pi and +pi radians.
* @param angle1
* The first angle in radians
* @param angle2
* The second angle in radians
* @return
* The difference between the angles in radians
*/
float utils_angle_difference_rad(float angle1, float angle2) {
float difference = angle1 - angle2;
while (difference < -M_PI) difference += 2.0 * M_PI;
while (difference > M_PI) difference -= 2.0 * M_PI;
return difference;
}
/**
* Takes the average of a number of angles.
*
* @param angles
* The angles in radians.
*
* @param angles_num
* The number of angles.
*
* @param weights
* The weight of the summarized angles
*
* @return
* The average angle.
*/
float utils_avg_angles_rad_fast(float *angles, float *weights, int angles_num) {
float s_sum = 0.0;
float c_sum = 0.0;
for (int i = 0; i < angles_num; i++) {
float s, c;
utils_fast_sincos_better(angles[i], &s, &c);
s_sum += s * weights[i];
c_sum += c * weights[i];
}
return utils_fast_atan2(s_sum, c_sum);
}
/**
* Get the middle value of three values
*
* @param a
* First value
*
* @param b
* Second value
*
* @param c
* Third value
*
* @return
* The middle value
*/
float utils_middle_of_3(float a, float b, float c) {
float middle;
if ((a <= b) && (a <= c)) {
middle = (b <= c) ? b : c;
} else if ((b <= a) && (b <= c)) {
middle = (a <= c) ? a : c;
} else {
middle = (a <= b) ? a : b;
}
return middle;
}
/**
* Get the middle value of three values
*
* @param a
* First value
*
* @param b
* Second value
*
* @param c
* Third value
*
* @return
* The middle value
*/
int utils_middle_of_3_int(int a, int b, int c) {
int middle;
if ((a <= b) && (a <= c)) {
middle = (b <= c) ? b : c;
} else if ((b <= a) && (b <= c)) {
middle = (a <= c) ? a : c;
} else {
middle = (a <= b) ? a : b;
}
return middle;
}
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float utils_fast_inv_sqrt(float x) {
union {
float as_float;
long as_int;
} un;
float xhalf = 0.5f*x;
un.as_float = x;
un.as_int = 0x5f3759df - (un.as_int >> 1);
un.as_float = un.as_float * (1.5f - xhalf * un.as_float * un.as_float);
return un.as_float;
}
/**
* Fast atan2
*
* See http://www.dspguru.com/dsp/tricks/fixed-point-atan2-with-self-normalization
*
* @param y
* y
*
* @param x
* x
*
* @return
* The angle in radians
*/
float utils_fast_atan2(float y, float x) {
float abs_y = fabsf(y) + 1e-20; // kludge to prevent 0/0 condition
float angle;
if (x >= 0) {
float r = (x - abs_y) / (x + abs_y);
float rsq = r * r;
angle = ((0.1963 * rsq) - 0.9817) * r + (M_PI / 4.0);
} else {
float r = (x + abs_y) / (abs_y - x);
float rsq = r * r;
angle = ((0.1963 * rsq) - 0.9817) * r + (3.0 * M_PI / 4.0);
}
if (y < 0) {
return(-angle);
} else {
return(angle);
}
}
/**
* Truncate the magnitude of a vector.
*
* @param x
* The first component.
*
* @param y
* The second component.
*
* @param max
* The maximum magnitude.
*
* @return
* True if saturation happened, false otherwise
*/
bool utils_saturate_vector_2d(float *x, float *y, float max) {
bool retval = false;
float mag = sqrtf(*x * *x + *y * *y);
max = fabsf(max);
if (mag < 1e-10) {
mag = 1e-10;
}
if (mag > max) {
const float f = max / mag;
*x *= f;
*y *= f;
retval = true;
}
return retval;
}
/**
* Fast sine and cosine implementation.
*
* See http://lab.polygonal.de/?p=205
*
* @param angle
* The angle in radians
* WARNING: Don't use too large angles.
*
* @param sin
* A pointer to store the sine value.
*
* @param cos
* A pointer to store the cosine value.
*/
void utils_fast_sincos(float angle, float *sin, float *cos) {
//always wrap input angle to -PI..PI
while (angle < -M_PI) {
angle += 2.0 * M_PI;
}
while (angle > M_PI) {
angle -= 2.0 * M_PI;
}
// compute sine
if (angle < 0.0) {
*sin = 1.27323954 * angle + 0.405284735 * angle * angle;
} else {
*sin = 1.27323954 * angle - 0.405284735 * angle * angle;
}
// compute cosine: sin(x + PI/2) = cos(x)
angle += 0.5 * M_PI;
if (angle > M_PI) {
angle -= 2.0 * M_PI;
}
if (angle < 0.0) {
*cos = 1.27323954 * angle + 0.405284735 * angle * angle;
} else {
*cos = 1.27323954 * angle - 0.405284735 * angle * angle;
}
}
/**
* Fast sine and cosine implementation.
*
* See http://lab.polygonal.de/?p=205
*
* @param angle
* The angle in radians
* WARNING: Don't use too large angles.
*
* @param sin
* A pointer to store the sine value.
*
* @param cos
* A pointer to store the cosine value.
*/
void utils_fast_sincos_better(float angle, float *sin, float *cos) {
//always wrap input angle to -PI..PI
while (angle < -M_PI) {
angle += 2.0 * M_PI;
}
while (angle > M_PI) {
angle -= 2.0 * M_PI;
}
//compute sine
if (angle < 0.0) {
*sin = 1.27323954 * angle + 0.405284735 * angle * angle;
if (*sin < 0.0) {
*sin = 0.225 * (*sin * -*sin - *sin) + *sin;
} else {
*sin = 0.225 * (*sin * *sin - *sin) + *sin;
}
} else {
*sin = 1.27323954 * angle - 0.405284735 * angle * angle;
if (*sin < 0.0) {
*sin = 0.225 * (*sin * -*sin - *sin) + *sin;
} else {
*sin = 0.225 * (*sin * *sin - *sin) + *sin;
}
}
// compute cosine: sin(x + PI/2) = cos(x)
angle += 0.5 * M_PI;
if (angle > M_PI) {
angle -= 2.0 * M_PI;
}
if (angle < 0.0) {
*cos = 1.27323954 * angle + 0.405284735 * angle * angle;
if (*cos < 0.0) {
*cos = 0.225 * (*cos * -*cos - *cos) + *cos;
} else {
*cos = 0.225 * (*cos * *cos - *cos) + *cos;
}
} else {
*cos = 1.27323954 * angle - 0.405284735 * angle * angle;
if (*cos < 0.0) {
*cos = 0.225 * (*cos * -*cos - *cos) + *cos;
} else {
*cos = 0.225 * (*cos * *cos - *cos) + *cos;
}
}
}
/**
* Calculate the values with the lowest magnitude.
*
* @param va
* The first value.
*
* @param vb
* The second value.
*
* @return
* The value with the lowest magnitude.
*/
float utils_min_abs(float va, float vb) {
float res;
if (fabsf(va) < fabsf(vb)) {
res = va;
} else {
res = vb;
}
return res;
}
/**
* Calculate the values with the highest magnitude.
*
* @param va
* The first value.
*
* @param vb
* The second value.
*
* @return
* The value with the highest magnitude.
*/
float utils_max_abs(float va, float vb) {
float res;
if (fabsf(va) > fabsf(vb)) {
res = va;
} else {
res = vb;
}
return res;
}
/**
* Create string representation of the binary content of a byte
*
* @param x
* The byte.
*
* @param b
* Array to store the string representation in.
*/
void utils_byte_to_binary(int x, char *b) {
b[0] = '\0';
int z;
for (z = 128; z > 0; z >>= 1) {
strcat(b, ((x & z) == z) ? "1" : "0");
}
}
float utils_throttle_curve(float val, float curve_acc, float curve_brake, int mode) {
float ret = 0.0;
if (val < -1.0) {
val = -1.0;
}
if (val > 1.0) {
val = 1.0;
}
float val_a = fabsf(val);
float curve;
if (val >= 0.0) {
curve = curve_acc;
} else {
curve = curve_brake;
}
// See
// http://math.stackexchange.com/questions/297768/how-would-i-create-a-exponential-ramp-function-from-0-0-to-1-1-with-a-single-val
if (mode == 0) { // Exponential
if (curve >= 0.0) {
ret = 1.0 - powf(1.0 - val_a, 1.0 + curve);
} else {
ret = powf(val_a, 1.0 - curve);
}
} else if (mode == 1) { // Natural
if (fabsf(curve) < 1e-10) {
ret = val_a;
} else {
if (curve >= 0.0) {
ret = 1.0 - ((expf(curve * (1.0 - val_a)) - 1.0) / (expf(curve) - 1.0));
} else {
ret = (expf(-curve * val_a) - 1.0) / (expf(-curve) - 1.0);
}
}
} else if (mode == 2) { // Polynomial
if (curve >= 0.0) {
ret = 1.0 - ((1.0 - val_a) / (1.0 + curve * val_a));
} else {
ret = val_a / (1.0 - curve * (1.0 - val_a));
}
} else { // Linear
ret = val_a;
}
if (val < 0.0) {
ret = -ret;
}
return ret;
}
/**
* A system locking function with a counter. For every lock, a corresponding unlock must
* exist to unlock the system. That means, if lock is called five times, unlock has to
* be called five times as well. Note that chSysLock and chSysLockFromIsr are the same
* for this port.
*/
void utils_sys_lock_cnt(void) {
if (!sys_lock_cnt) {
chSysLock();
}
sys_lock_cnt++;
}
/**
* A system unlocking function with a counter. For every lock, a corresponding unlock must
* exist to unlock the system. That means, if lock is called five times, unlock has to
* be called five times as well. Note that chSysUnlock and chSysUnlockFromIsr are the same
* for this port.
*/
void utils_sys_unlock_cnt(void) {
if (sys_lock_cnt) {
sys_lock_cnt--;
if (!sys_lock_cnt) {
chSysUnlock();
}
}
}