forked from cfzd/Ultra-Fast-Lane-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
48 lines (38 loc) · 1.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch, os
from model.model import parsingNet
from utils.common import merge_config
from utils.dist_utils import dist_print
from evaluation.eval_wrapper import eval_lane
import torch
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
args, cfg = merge_config()
distributed = False
if 'WORLD_SIZE' in os.environ:
distributed = int(os.environ['WORLD_SIZE']) > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
dist_print('start testing...')
assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']
if cfg.dataset == 'CULane':
cls_num_per_lane = 18
elif cfg.dataset == 'Tusimple':
cls_num_per_lane = 56
else:
raise NotImplementedError
net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane, cfg.num_lanes),
use_aux=False).cuda() # we dont need auxiliary segmentation in testing
state_dict = torch.load(cfg.test_model, map_location = 'cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict = False)
if distributed:
net = torch.nn.parallel.DistributedDataParallel(net, device_ids = [args.local_rank])
if not os.path.exists(cfg.test_work_dir):
os.mkdir(cfg.test_work_dir)
eval_lane(net, cfg.dataset, cfg.data_root, cfg.test_work_dir, cfg.griding_num, False, distributed)