-
Notifications
You must be signed in to change notification settings - Fork 71
/
delta_net.py
297 lines (263 loc) · 11.7 KB
/
delta_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang
from __future__ import annotations
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.l2norm import l2_norm
from fla.ops.delta_rule import (chunk_delta_rule, fused_chunk_delta_rule,
fused_recurrent_delta_rule)
if TYPE_CHECKING:
from fla.models.utils import Cache
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
class DeltaNet(nn.Module):
r"""
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
Args:
mode (str, Optional):
Which DeltaNet kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 1.0.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
use_beta (bool, Optional):
Whether to use beta. Default: `True`.
use_gate (bool, Optional):
Whether to use output gate. Default: `False`.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `True`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
allow_neg_eigval (bool, Optional):
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
layer_idx (int, Optional):
The index of the layer. Default: None.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
qk_activation (str, Optional):
The activation function for the query and key. Default: `silu`.
qk_norm (str, Optional):
The normalization method for the query and key. Default: `l2`.
"""
def __init__(
self,
mode: str = 'chunk',
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
use_beta: bool = True,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
allow_neg_eigval: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = 'l2',
norm_eps: float = 1e-5,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.allow_neg_eigval = allow_neg_eigval
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = nn.SiLU()
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.use_beta = use_beta
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.k_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.v_conv1d = ShortConvolution(
hidden_size=self.value_dim,
kernel_size=conv_size,
activation='silu'
)
else:
raise UserWarning(
"ShortConvolution is crucial to the performance. "
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
)
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps)
else:
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache)
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache)
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
if self.qk_activation == 'silu':
q, k = self.silu(q), self.silu(k)
v = self.silu(self.v_proj(hidden_states))
q, k, v = map(lambda x: rearrange(x, '... (h d) -> ... h d', h=self.num_heads), (q, k, v))
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm is not None:
if self.qk_norm == 'l2':
q = l2_norm(q)
k = l2_norm(k)
elif self.qk_norm == 'sum':
q = sum_norm(q).to(q)
k = sum_norm(k).to(k)
if self.use_beta:
beta = self.b_proj(hidden_states).sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
if self.allow_neg_eigval:
beta = beta * 2.
# dealing with padding
if attention_mask is not None:
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
head_first=False
)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
head_first=False
)
elif mode == 'chunk':
o, recurrent_state = chunk_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
head_first=False
)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[2]
)
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
o = self.o_norm(o, g)
else:
o = self.o_norm(o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values