-
Notifications
You must be signed in to change notification settings - Fork 49
/
val.py
232 lines (204 loc) · 12.3 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from torchvision import transforms
import torch
import os
from PIL import Image
from tools import *
import argparse
import datetime
def validation(net, datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png']):
img_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
gt_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor()])
img_transform_gray = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.449], std=[0.226])])
net.eval()
net = net.module.to(device)
with torch.no_grad():
ave_p, ave_j = [], []
for p in range(len(datapath)):
all_p, all_j = [], []
all_class = os.listdir(os.path.join(datapath[p], img_dir_name))
image_list, gt_list = list(), list()
for s in range(len(all_class)):
image_path = os.listdir(os.path.join(datapath[p], img_dir_name, all_class[s]))
image_list.append(list(map(lambda x: os.path.join(datapath[p], img_dir_name, all_class[s], x), image_path)))
gt_list.append(list(map(lambda x: os.path.join(datapath[p], gt_dir_name, all_class[s], x.replace(img_ext[p], gt_ext[p])), image_path)))
for i in range(len(image_list)):
cur_class_all_image = image_list[i]
cur_class_all_gt = gt_list[i]
cur_class_gt = torch.zeros(len(cur_class_all_gt), img_size, img_size)
for g in range(len(cur_class_all_gt)):
gt_ = Image.open(cur_class_all_gt[g]).convert('L')
gt_ = gt_transform(gt_)
gt_[gt_ > 0.5] = 1
gt_[gt_ <= 0.5] = 0
cur_class_gt[g, :, :] = gt_
cur_class_rgb = torch.zeros(len(cur_class_all_image), 3, img_size, img_size)
for m in range(len(cur_class_all_image)):
rgb_ = Image.open(cur_class_all_image[m])
if rgb_.mode == 'RGB':
rgb_ = img_transform(rgb_)
else:
rgb_ = img_transform_gray(rgb_)
cur_class_rgb[m, :, :, :] = rgb_
cur_class_mask = torch.zeros(len(cur_class_all_image), img_size, img_size)
divided = len(cur_class_all_image) // group_size
rested = len(cur_class_all_image) % group_size
if divided != 0:
for k in range(divided):
group_rgb = cur_class_rgb[(k * group_size): ((k + 1) * group_size)]
# group_rgb = group_rgb.to(device)
group_rgb = group_rgb.cuda()
_, pred_mask = net(group_rgb)
cur_class_mask[(k * group_size): ((k + 1) * group_size)] = pred_mask
if rested != 0:
group_rgb_tmp_l = cur_class_rgb[-rested:]
group_rgb_tmp_r = cur_class_rgb[:group_size-rested]
group_rgb = torch.cat((group_rgb_tmp_l, group_rgb_tmp_r), dim=0)
# group_rgb = group_rgb.to(device)
group_rgb = group_rgb.cuda()
_, pred_mask = net(group_rgb)
cur_class_mask[(divided * group_size): ] = pred_mask[:rested]
for q in range(cur_class_mask.size(0)):
single_p, single_j = calc_precision_and_jaccard(cur_class_mask[q, :, :].numpy(), cur_class_gt[q, :, :].numpy())
all_p.append(single_p)
all_j.append(single_j)
dataset_p = np.mean(all_p)
dataset_j = np.mean(all_j)
ave_p.append(dataset_p)
ave_j.append(dataset_j)
return ave_p, ave_j
def validation_with_flow(net, datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png']):
img_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
gt_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor()])
img_transform_gray = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.449], std=[0.226])])
net.eval()
net = net.module.to(device)
with torch.no_grad():
ave_p, ave_j = [], []
for p in range(len(datapath)):
all_p, all_j = [], []
all_class = sorted(os.listdir(os.path.join(datapath[p], img_dir_name)))
image_list,flow_list, gt_list = list(), list(),list()
for s in range(len(all_class)):
image_path = sorted(os.listdir(os.path.join(datapath[p], img_dir_name, all_class[s])))
flow_path = sorted(os.listdir(os.path.join(datapath[p], 'flow', all_class[s])))
if len(image_path)>len(flow_path):
image_path=image_path[:-1]
image_list.append(sorted(list(map(lambda x: os.path.join(datapath[p], img_dir_name, all_class[s], x), image_path))))
flow_list.append(sorted(list(map(lambda x: os.path.join(datapath[p], 'flow', all_class[s], x.replace(img_ext[p], '.jpg')), flow_path))))
gt_list.append(sorted(list(map(lambda x: os.path.join(datapath[p], gt_dir_name, all_class[s], x.replace(img_ext[p], gt_ext[p])), image_path))))
for i in range(len(image_list)):
cur_class_all_image = image_list[i]
cur_class_all_gt = gt_list[i]
cur_class_all_flow=flow_list[i]
cur_class_gt = torch.zeros(len(cur_class_all_gt), img_size, img_size)
for g in range(len(cur_class_all_gt)):
gt_ = Image.open(cur_class_all_gt[g]).convert('L')
gt_ = gt_transform(gt_)
gt_[gt_ > 0.5] = 1
gt_[gt_ <= 0.5] = 0
cur_class_gt[g, :, :] = gt_
cur_class_rgb = torch.zeros(len(cur_class_all_image), 3, img_size, img_size)
cur_class_flow=torch.zeros(len(cur_class_all_flow),3,img_size,img_size)
for m in range(len(cur_class_all_flow)):
flow_=Image.open(cur_class_all_flow[m])
if flow_.mode=='RGB':
flow_=img_transform(flow_)
else:
flow_=img_transform_gray(rgb_)
cur_class_flow[m,:,:,:]=flow_
for m in range(len(cur_class_all_image)):
rgb_ = Image.open(cur_class_all_image[m])
if rgb_.mode == 'RGB':
rgb_ = img_transform(rgb_)
else:
rgb_ = img_transform_gray(rgb_)
cur_class_rgb[m, :, :, :] = rgb_
cur_class_mask = torch.zeros(len(cur_class_all_image), img_size, img_size)
divided = len(cur_class_all_image) // group_size
rested = len(cur_class_all_image) % group_size
if divided != 0:
for k in range(divided):
group_rgb = cur_class_rgb[(k * group_size): ((k + 1) * group_size)]
group_flow=cur_class_flow[(k * group_size): ((k + 1) * group_size)].cuda()
# group_rgb = group_rgb.to(device)
group_rgb = group_rgb.cuda()
_,pred_mask = net(group_rgb,group_flow)
cur_class_mask[(k * group_size): ((k + 1) * group_size)] = pred_mask
if rested != 0:
group_rgb_tmp_l = cur_class_rgb[-rested:]
group_rgb_tmp_r = cur_class_rgb[:group_size-rested]
group_rgb = torch.cat((group_rgb_tmp_l, group_rgb_tmp_r), dim=0)
group_flow_tmp_l = cur_class_flow[-rested:]
group_flow_tmp_r = cur_class_flow[:group_size-rested]
group_flow = torch.cat((group_flow_tmp_l, group_flow_tmp_r), dim=0).cuda()
# group_rgb = group_rgb.to(device)
group_rgb = group_rgb.cuda()
_,pred_mask = net(group_rgb,group_flow)
cur_class_mask[(divided * group_size): ] = pred_mask[:rested]
for q in range(cur_class_mask.size(0)):
single_p, single_j = calc_precision_and_jaccard(cur_class_mask[q, :, :].numpy(), cur_class_gt[q, :, :].numpy())
all_p.append(single_p)
all_j.append(single_j)
dataset_p = np.mean(all_p)
dataset_j = np.mean(all_j)
ave_p.append(dataset_p)
ave_j.append(dataset_j)
return ave_p, ave_j
if __name__=='__main__':
from model_video import build_model, weights_init
parser = argparse.ArgumentParser()
parser.add_argument('--vgg16_path', default='./weights/vgg16_bn_feat.pth',help="vgg path")
parser.add_argument('--npy_path',default='./utils/new_cat2imgid_dict4000.npy', help="npy path")
parser.add_argument('--output_dir', default='./VSOD_results/wo_optical_flow/DAVIS/', help='directory for result')
parser.add_argument('--task', default='CoS', choices=['CoS','VSOD','CoSD'],help='task')
parser.add_argument('--use_flow', default=False, help='use flow or not')
parser.add_argument('--gpu_id', default='cuda:0', help='id of gpu')
parser.add_argument('--crf', default=False, help='make outline clear')
parser.add_argument('--img_size', default=224, help='image size')
parser.add_argument('--lr', default=1e-5, help='learning rate')
parser.add_argument('--lr_de', default=20000, help='learning rate decay')
parser.add_argument('--epochs', default=100000, help='epochs')
parser.add_argument('--bs', default=8, help='batch size')
parser.add_argument('--gs', default=5, help='group size')
parser.add_argument('--log_interval', default=100, help='log interval')
parser.add_argument('--val_interval', default=1000, help='val interval')
parser.add_argument('--model', default='./models/video_best.pth',help="restore checkpoint")
args = parser.parse_args()
val_datapath = ['./cosegdatasets/DAVIS',
'./cosegdatasets/MSRC7',
'./cosegdatasets/Internet_Datasets300',
'./cosegdatasets/PASCAL_VOC']
device='cuda:0'
device = torch.device('cuda:0')
img_size = args.img_size
lr = args.lr
lr_de = args.lr_de
epochs = args.epochs
batch_size = args.bs
group_size = args.gs
log_interval = args.log_interval
val_interval = args.val_interval
gpu_id='cuda:0'
net = build_model(device).to(device)
net = net.to(device)
net = torch.nn.DataParallel(net)
state_dict = torch.load(args.model, map_location=gpu_id)
net.load_state_dict(state_dict)
ave_p, ave_j = validation(net, val_datapath, device, group_size=5, img_size=224, img_dir_name='image', gt_dir_name='groundtruth',
img_ext=['.jpg', '.jpg', '.jpg', '.jpg'], gt_ext=['.png', '.bmp', '.jpg', '.png'])
#custom_print('-' * 100, log_txt_file, 'a+')
print(datetime.datetime.now().strftime('%F %T') + ' iCoseg8 p: [%.4f], j: [%.4f]' %
(ave_p[0], ave_j[0]))
print(datetime.datetime.now().strftime('%F %T') + ' MSRC7 p: [%.4f], j: [%.4f]' %
(ave_p[1], ave_j[1]))
print(datetime.datetime.now().strftime('%F %T') + ' Int_300 p: [%.4f], j: [%.4f]' %
(ave_p[2], ave_j[2]))
print(datetime.datetime.now().strftime('%F %T') + ' PAS_VOC p: [%.4f], j: [%.4f]' %
(ave_p[3], ave_j[3]))
#custom_print('-' * 100, log_txt_file, 'a+')