-
Notifications
You must be signed in to change notification settings - Fork 1
/
DCGANs.py
148 lines (118 loc) · 5.22 KB
/
DCGANs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Deep Convolutional GANs
# Importing the libraries
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
# Setting some hyperparameters
batchSize = 64
imageSize = 64 # size of the generated images (64x64).
# Creating the transformations
transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images.
# Loading the dataset
dataset = dset.ImageFolder(root = './data', transform = transform) # We download the training set in the ./data folder and we apply the previous transformations on each image.
dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True) # We use dataLoader to get the images of the training set batch by batch.
# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# defining the generator
class G(nn.Module):
def __init__(self):
super(G, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
output = self.main(input)
return output
# creating the generator
generator = G()
generator.apply(weights_init)
# defining the discriminator
class D(nn.Module):
def __init__(self):
super(D, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input)
return output.view(-1) # .view(-1) flattens the result
# creating the discriminator
discriminator = D()
discriminator.apply(weights_init)
# Training the DCGAN
loss = nn.BCELoss()
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas = (0.5, 0.999))
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas = (0.5, 0.999))
for epoch in range(350):
for i, data in enumerate(dataloader, 0):
# Step 1: Udating the weights of the NN of the D
discriminator.zero_grad()
# Training the D with a real image of the dataset
real, _ = data
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = discriminator(input)
errorD_real = loss(output, target)
# Training the D with the fake image generated by the G
noise = Variable(torch.randn(input.size()[0], 100, 1, 1)) # batchsize, input vector, size 1 by 1
fake = generator(noise)
target = Variable(torch.zeros(input.size()[0]))
output = discriminator(fake.detach())
errorD_fake = loss(output, target)
# Backprop
errorD = errorD_real + errorD_fake
errorD.backward()
optimizer_D.step()
# Updating the weights (G)
generator.zero_grad()
target = Variable(torch.ones(input.size()[0]))
output = discriminator(fake)
errorG = loss(output, target)
errorG.backward()
optimizer_G.step()
# Step 3: Printing the losses; saving real images and fake images
print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G: %.3f' % (epoch, 25, i, len(dataloader), errorD.data[0], errorG.data[0]))
if i % 100 == 0:
vutils.save_image(real, '%s/real_images.png' % './fake_data', normalize=True)
fake = generator(noise)
vutils.save_image(fake.data, '%s/fake_images_epoch_%03d.png' % ('./fake_data', epoch), normalize = True)