-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkldiv.py
259 lines (198 loc) · 8.34 KB
/
kldiv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# coding=utf-8
# python kldiv.py foreground.txt background.txt termcloud.html
# python kldiv.py foreground.txt wiki_freqlist.txt.gz termcloud.html
# python kldiv.py foreground.txt termcloud.html
# python kldiv.py foreground.txt wiki_freqlist.txt.gz
# Source: https://github.com/suzanv/termprofiling/
import re
import os
import sys
import math
import operator
import gzip
from collections import defaultdict
def tokenize(t):
text = t.lower()
text = re.sub("\n"," ",text)
text = re.sub(r'<[^>]+>',"",text) # remove all html markup
text = re.sub('[^a-zèéeêëėęûüùúūôöòóõœøîïíīįìàáâäæãåçćč&@#A-ZÇĆČÉÈÊËĒĘÛÜÙÚŪÔÖÒÓŒØŌÕÎÏÍĪĮÌ0-9-_ \']', "", text)
wrds = text.split()
return wrds
stoplist = set()
print("Read stopword list")
module_dir = os.path.dirname(os.path.realpath(__file__))
with open(module_dir+'/stoplist.txt') as stoplist_file:
for line in stoplist_file:
stopword = line.rstrip()
stoplist.add(stopword)
def get_all_ngrams (text,maxn) :
words = tokenize(text)
terms = defaultdict(int)
for i in range (0,len(words)):
for j in range (1,maxn+1):
ngram = words[i:i+j]
if ngram[0] not in stoplist and ngram[-1] not in stoplist:
# the first and last word of the ngram may not be stopwords
term = " ".join(ngram)
terms[term] += 1
return terms
def filter_ngrams(freq_dict,min_freq):
filtered_freq_dict = dict()
for ngram in freq_dict:
if re.match("[a-zA-Z]",ngram) and len(ngram) >2:
if freq_dict[ngram] >= min_freq:
filtered_freq_dict[ngram] = freq_dict[ngram]
return filtered_freq_dict
def read_text_in_dict(text,maxn=3,min_freq=5):
freq_dict = get_all_ngrams(text,maxn)
freq_dict = filter_ngrams(freq_dict,min_freq)
total_term_count = 0
for key in freq_dict:
total_term_count += freq_dict[key]
return freq_dict, total_term_count
def read_columns_in_dict(existing_dict,total_term_count,file,column_with_term,column_with_freq):
for l in file:
#print (l)
columns = l.rstrip().split("\t")
if re.match("[0-9]+",columns[column_with_freq]):
t = " ".join(columns[column_with_term])
freq = int(columns[column_with_freq])
existing_dict[t] = freq
total_term_count += freq
return existing_dict, total_term_count
def compute_kldiv_for_all_terms (fg_dict,bg_dict,fg_term_count,bg_term_count,gamma=0.5):
kldiv_per_term = dict()
for term in fg_dict:
fg_freq = fg_dict[term]
relfreq_fg = float(fg_freq) / float(fg_term_count)
# kldivI is kldiv for informativeness: relative to bg corpus freqs
kldivI = 0
if bg_term_count > 0:
bg_freq = 1
if term in bg_dict:
bg_freq = bg_dict[term]
relfreq_bg = float(bg_freq)/float(bg_term_count)
kldivI = relfreq_fg*math.log(relfreq_fg/relfreq_bg)
# kldivP is kldiv for phraseness: relative to unigram freqs
unigrams = term.split(" ")
relfreq_unigrams = 1.0
for unigram in unigrams:
if unigram in fg_dict:
# stopwords are not in the dict
u_freq = fg_dict[unigram]
u_relfreq = float(u_freq)/float(fg_term_count)
relfreq_unigrams *= u_relfreq
kldivP = relfreq_fg*math.log(relfreq_fg/relfreq_unigrams)
kldiv = (1-gamma)*kldivI+gamma*kldivP
kldiv_per_term[term] = kldiv
#print (term,kldiv)
return kldiv_per_term
def print_top_n_terms(score_dict,n=15):
sorted_terms = sorted(score_dict.items(),key=operator.itemgetter(1),reverse=True)
i=0
for (t,score) in sorted_terms:
i += 1
print(t)
if i==n:
break
def print_wordcloud(outfile,freq_dict,nr_of_words_in_cloud=15):
sorted_wordfreq = sorted(freq_dict.items(), key=operator.itemgetter(1),reverse=True)
top_words = dict()
rank=0
for (word,freq) in sorted_wordfreq:
rank += 1
if rank> nr_of_words_in_cloud:
break
#if re.match("[a-z][a-z][a-z]+",word):
top_words[word] = rank
outfile.write('<div id="word-cloud">\n')
#for (word,i) in sorted(top_words.items(), key=operator.itemgetter(0)):
for word in top_words:
i = top_words[word]
word = re.sub(" ","<span style=\"color:white\">_</span>",word)
outfile.write('<span class="word-'+str(i)+'">'+word+' </span>\n')
outfile.write('</div><br><br><br><br>\n')
def print_wordcloud_to_html(kldiv_per_term,number_of_terms=15,htmlpath="termcloud.html"):
htmlfile = open(htmlpath,'w')
htmlfile.write("<html>\n"
"<head>\n"
"<meta http-equiv=\"content-type\" content=\"text/html; charset=utf-8\" />\n"
"<link href='http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz:regular,bold' rel='stylesheet'"
" type='text/css' />\n"
"<link href='wordcloud.css' rel='stylesheet' type='text/css' />\n"
"</head>\n"
"<body>\n")
print_wordcloud(htmlfile,kldiv_per_term,number_of_terms)
htmlfile.write('<br><br>\n')
htmlfile.write("</body>\n"
"</html>\n")
htmlfile.close()
def process_corpora_and_print_terms(foreground,background_file=module_dir+"/wiki_freqlist.txt.gz",htmlpath="termcloud.html",
gamma=0.5,maxn=3,number_of_terms=20,min_freq=5):
fgtext = ""
print("Read foreground corpus",foreground)
foreground_files = list()
if os.path.isdir(foreground):
for foreground_file in os.listdir(foreground):
foreground_files.append(foreground+foreground_file)
else:
foreground_files.append(foreground)
for foreground_file in foreground_files:
with open(foreground_file,'r') as fg:
fgtext += fg.read()
fg_dict, fg_term_count = read_text_in_dict(fgtext,maxn,min_freq)
bg_dict = dict()
bg_term_count = 0
if background_file is not None:
if isinstance(background_file, str):
bgtext = background_file
bg_dict, bg_term_count = read_text_in_dict(bgtext,maxn)
else:
print("Read background corpus",background_file)
bg_dict = dict()
bg_term_count = 0
if ".gz" in background_file:
print ("corpus is gzipped file")
bg=gzip.open(background_file,'rt',encoding = "ISO-8859-1")
else:
bg = open(background_file,'r')
first_line = bg.readline().rstrip()
#print (first_line)
if re.match("^[a-zA-Z0-9' &-]+\t[0-9]+$",first_line):
# is freqlist
print ("corpus is freqlist")
bg_dict,bg_term_count = read_columns_in_dict(bg_dict,bg_term_count,bg,0,1)
else:
# bgcorpus in text file
print ("corpus is running text")
bgtext=bg.read()
bg_dict, bg_term_count = read_text_in_dict(bgtext,maxn)
#print("Calculate kldiv per term in foregound corpus")
kldiv_per_term = compute_kldiv_for_all_terms(fg_dict,bg_dict,fg_term_count,bg_term_count,gamma)
print("\n\nTop terms:")
print_top_n_terms(kldiv_per_term,number_of_terms)
print_wordcloud_to_html(kldiv_per_term,number_of_terms,htmlpath)
if __name__ == "__main__":
gamma = 0.2 # parameter for weight of the phraseness component
maxn = 3 # maximum ngram length
number_of_terms = 20
min_freq = 5 # minimum frequency for terms to occur
print("gamma:",gamma)
print("maxn:",maxn)
print("min freq:", min_freq)
background_file = None
foreground_file = sys.argv[1]
if len(sys.argv) == 4:
background_file = sys.argv[2]
htmlpath = sys.argv[3]
elif "html" in sys.argv[2]:
htmlpath = sys.argv[2]
print ("No background corpus; only compute phraseness component")
else:
background_file = sys.argv[2]
htmlpath = "wordcloud.html"
if gamma == 1.0:
print("Gamma = 1.0; only compute the phraseness component")
background_file = None
process_corpora_and_print_terms(foreground_file,background_file,htmlpath,gamma,maxn,number_of_terms,min_freq)
print("\nWordcloud in",htmlpath)